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Abstract

We present a Self-Organizing Kohonen Neural Network for quantizing colour graphics

images. The network is compared with existing algorithmic methods for colour quanti-

zation. It is shown experimentally that, by adjusting a quality factor, the network can

produce images of much greater quality with longer running times, or slightly better

quality with shorter running times than the existing methods. This confounds the fre-

quent observation that Kohonen Neural Networks are necessarily slow. The continuity

of the colour map produced can be exploited for further image compression, or for

colour palette editing.

1 Introduction

Colour computer graphics is one of the most popular applications of computer technology
today. The best representation of a colour image is an array of pixels, each pixel being
a triple (R;G;B) of intensities for the three primary colours red, green, and blue. Each
intensity is usually represented in the range 0 : : : 255. This requires 3 bytes of storage per
pixel, which consumes excessive space, and requires large and expensive frame bu�ers for
display [6, p 342].

A solution to these problems is to quantize the image using a table of up to 256 distinct
colours (R0; G0; B0); : : : ; (R255; G255; B255). Each pixel (R;G;B) is then replaced by a single
byte i which indicates the most similar colour (Ri; Gi; Bi) in the table. The table (or map)
must be chosen in such a way that when pixels (R;G;B) are replaced by (or mapped to) the
colours (Ri; Gi; Bi) in the table, the resulting errors are as small as possible.

The pixels (R;G;B) in the input image can be viewed as points in a 256� 256� 256
cube (the colour space). Figure 1 shows the distribution of 122,227 distinct points from a
test image (the image itself is shown in �gure 5). The lower left of the �gure shows the
distribution of points in the cube, with the origin (0; 0; 0) at the lower left of the diagram.
The blue coordinate (B) is shown on the vertical axis, red (R) on the horizontal, and green
(G) extending into the page. Projections of this cube from the top, front and side are shown
around it (clockwise from the top left). Shades of grey are represented by points on the main
diagonal from (0; 0; 0) to (255; 255; 255). Most points are clustered near the main diagonal,
re
ecting the fact that the colours in this image are not fully saturated.

There are two basic approaches to colour quantization, which we call pre-clustering
and post-clustering. Both approaches divide the pixels into 256 clusters, and choose a
representative (Ri; Gi; Bi) for the ith cluster. In pre-clustering we �rst divide the pixels
into 256 clusters, and then choose the arithmetic mean or mode of all the pixels in the
ith cluster as the representative (Ri; Gi; Bi). Currently available quantization methods all
use pre-clustering, with varying methods for choosing clusters. In post-clustering we �rst
choose 256 representatives (Ri; Gi; Bi) and place pixels in the cluster corresponding to the

representative to which they are closest. This requires a measure of the distance between
a pixel (R;G;B) and each representative (Ri; Gi; Bi). Although Euclidean distance is the

�An edited version of this paper appeared in Network: Computation in Neural Systems, Vol-

ume 5, 1994, pages 351{367, Institute of Physics Publishing.
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Figure 1: Colour distribution for an image with 122,227 distinct colours

2



a. Points Distribution

c. Median−Cut Algorithm d. Sophisticated Median−Cut

e. Oct−Trees (Quadtrees) f. Kohonen Neural Network
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Figure 2: Colour quantization on a 16� 16 square

most obvious, and similarity to the human eye is perhaps the most accurate, for ease of
computation we use the `Manhattan' distance:

d = jR�Rij+ jG�Gij+ jB �Bij

The quantization technique we propose uses post-clustering, with the choice of representa-
tives being made using a Self-Organizing Neural Network [15].

The e�ectiveness of a quantization technique can be evaluated most simply by �nding the
mean distance jR �Rij+ jG�Gij+ jB �Bij between pixels and their representatives. We
call this the mean mapping error, and this error should be as small as possible. Although our
experiments are performed on 24-bit colour images, the colour quantization process process
can be illustrated more clearly by considering a 16 � 16 space of pairs (x; y), choosing
four representatives instead of 256. Figure 2a shows a sample distribution of 36 pairs as
open circles, and �gure 2b-f shows the result of various quantization techniques. The mean
mapping errors for each technique are shown in table 1. Representatives are shown as �lled
circles, and horizontal and vertical lines divide the clusters.

One approach to quantization is to attempt to form equal-sized clusters (�gure 2b).
However, this is not only diÆcult, but it does not produce the most e�ective result. Images
often contain small groups of pixels isolated in the colour space (e.g. specular highlights).
These will not be represented accurately using equal-sized clusters. One way of achieving
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approximately equal-sized clusters is Heckbert's Median-Cut algorithm [6, p 344] which re-
peatedly forms histograms of pixel occurrences, and divides volumes of colour space along
the median, until the required number of clusters is obtained (�gure 2c). A more sophisti-
cated version of Median-Cut will make the division to one side of the median if the pixel
distribution contains a suitable `gap' (�gure 2d).

TheOct-Tree algorithm due to Gervautz and Purgathofer [6, p 345] repeatedly subdivides
a cube into 8 smaller cubes in a tree-like fashion (for our simple example, we divide a square
into 4 smaller squares). The algorithm then repeatedly combines adjacent cubes which
contain the least number of pixels, until the desired number of clusters is obtained. This
process may result in slightly less than 256 clusters, although it has the advantage of placing
isolated groups of points in their own cluster (�gure 2e).

The technique we propose uses a one-dimensional Self-organizing Neural Network [15].
The network contains one neuron for each desired cluster. Through the learning process, each
neuron acquires a weight vector (Ri; Gi; Bi) which is used as a representative. After learning
is completed, pixels are mapped to the closest weight vector. For our simple example, weight
vectors are pairs, and �gure 2f shows a network with 4 neurons after learning. Adjacent
neurons are connected by line segments, and �lled circles indicate the weight vectors, which
are used as representatives. It can be seen that for this example the total length of line
segments connecting adjacent neurons is the smallest possible. In general, experiments show
that the average distance between neurons is kept small, although there are no theoretical
results con�rming this for the general case.

Table 1: Mean Mapping Errors for Simple Example

Technique Error

b. Equal-sized clusters 2.39
c. Simple Median-Cut 3.53
d. Sophisticated Median-Cut 1.86
e. Oct-Trees (Quadtrees) 1.94
f. Kohonen Neural Network 2.14

2 Kohonen Neural Networks

Kohonen Neural Networks [15, 18] and [14, sections 3.4 and 4.4] are a form of self-organizing
neural network which de�ne a mapping from a subset of Rn to Rm, where m � n. The
mapping is observed to have three important properties: it is continuous almost everywhere
on its domain, the reverse map is continuous, and the output of the map provides close to
the maximum possible information about the input. However, there is no general proof that
these properties hold for every network. An analytical solution for the �nal network can be
given for the case n = m = 1 [15, 18], or for m = 1 and a neighbourhood of �xed radius 0
or 2 [4]. For other cases, no analytical solution has been found. The theoretical properties
of Kohonen Neural Networks are also discussed in [8]. These networks are based on the
behaviour of topological maps in the cerebral cortex of the brain. They have been applied
to areas such as speech recognition [3, chapter 5], pattern recognition [16], creativity in
theorem-proving [10], the learning of ballistic movements [19], and modelling aerodynamic

ow [13].

We use a Kohonen Neural Network consisting of a one-dimensional array of 256 neurons,
each containing a weight vector (Ri; Gi; Bi). The network de�nes a mapping M from a
triple (R;G;B) to the index i of the closest weight vector. This mapping induces a function

F from that subset of the cube [0; 255]
3
which is occupied by pixels, to the interval [0; 255],

de�ned by connecting adjacent weight vectors by line segments, as is done in �gure 2f. Figure
3 shows the network corresponding to �gure 1, using the same format. The line segments
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Figure 3: Kohonen Neural Network for an image with 122,227 distinct colours

in these �gures form a single open curve C de�ned by:

Cx = (1 + bxc � x)(Rbxc;Gbxc;Bbxc) + (x� bxc)(R1 + bxc;G1 + bxc;B1 + bxc)

where x ranges from 0 to 255. The function F then maps each point in [0; 255]
3
to the

closest point on the curve C. This `closeness' is in terms of Euclidean distance. The fact
that our implementation uses `Manhattan' distances for eÆciency is not a problem, since
convergence of one distance to zero implies convergence of the other. The function F is
continuous on its domain except for a �nite number of surfaces which are equidistant from
two parts of the curve, i.e. they bisect `loops' in the network. These `discontinuity surfaces'
often occur in parts of the domain thinly occupied by pixels, as is seen when �gures 3 and 1
are compared. The continuity of F almost everywhere means that similar colours are almost
always mapped to nearby indexes i. The inverse function is de�ned by F�1(x) = Cx, and is
trivially continuous. However, since the line segments in the curve tend to be relatively short,
adjacent weight vectors (Ri; Gi; Bi) will usually be similar colours. Finally the mapping has
the properties that the mean mapping error jR�Rij+ jG�Gij+ jB �Bij is small, and
that each index i is output with approximately equal frequency (except where there are
isolated groups of pixels).

The network must map an input (R;G;B) to the index i which minimises the mapping
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error
d = jR�Rij+ jG�Gij+ jB �Bij

To do this eÆciently, the network (after training is completed as described below) is con-
verted to a table of quadruples (Ri; Gi; Bi; i), sorted and indexed on the green component
Gi. In searching for the minimum value of d, values of Gi close to G are examined �rst, and
the current smallest distance dmin is used to limit the search to values of Gi in the range
G� dmin < Gi < G+ dmin. In order to avoid any consistent bias, values of Gi above and
below G are examined alternately. As smaller values of d are found, the search space grows
smaller. Our experiments show that on average, only 11% of the table is searched before
the minimum value of d is found.

3 The Learning Algorithm

Initially we set the weight vectors with Ri = Gi = Bi = i. Kohonen [15, p 135] suggests
initially assigning random values near the centre of the cube, but we have found that for
this application, initialising the weight vectors to positions on the main diagonal is a good
�rst approximation to the input. We then repeatedly scan input pixels (R;G;B) and �nd
the `best' weight vector (Ri; Gi; Bi) corresponding to the input. This vector is then updated
by moving it closer to the input:

(Ri; Gi; Bi) := �(R;G;B) + (1� �)(Ri; Gi; Bi)

Here � is a parameter which is initially 1, and decreases with time. Kohonen [15, p 133]
suggests decreasing � linearly, but we have found that results are improved and training
time is decreased if � decreases exponentially from 1 at the start of training (cycle 0) to 0.05
at the end of training (cycle 99), i.e. the value of � at cycle t is given by:

� = e�0:03t

Although this de�nition of � does not satisfy the guaranteed convergence criterion in [18, p
260], it performs extremely well for this application, requiring less training than is usual in
Kohonen Neural Networks.

As usual, we consider the network to be slightly `elastic' in that when a weight vector is
updated, the neighbouring vectors are also moved. Speci�cally, there is a neighbourhood of
radius r, which decreases with time, and for i� r � j � i+ r (and 0 � j � 255), we update
the vectors in the neighbourhood by:

(Rj ; Gj ; Bj) := ��(i;j;r)(R;G;B) + (1� ��(i;j;r))(Rj ; Gj ; Bj)

where �(i;j;r) is equal to 1 if i = j, decreasing as ji� jj increases, down to 0 when ji� jj = r.
We have found by experience that, as is the case with �, the values of r used signi�cantly
a�ect performance. The best results for this application are obtained when r decreases
exponentially from 32 at cycle 0 until r becomes less than 2 at cycle 86, i.e. the value of r
at cycle t is given by:

r = 32e�0:0325t

This de�nition of r is combined with the following de�nition of �(i;j;r):

�(i;j;r) = 1�

�
jj � ij

brc

�2

where brc is the integer part of r. A consequence of this de�nition is that for j = i � brc,
(Rj ; Gj ; Bj) is unchanged, and hence when r < 2 (i.e. the last 14 cycles), only (Ri; Gi; Bi)
is updated. Figure 4 shows this updating process for the case where r = 2 and � = 0:6666.
The network before update is shown by solid lines and crosses, and the updated network
is shown by dashed lines and open circles. The closest neuron is moved two-thirds of the
distance to the new data point (as indicated by the arrow) and the two neighbouring neurons
are moved half the distance (since �(i;j;r) = 0:75).
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Figure 4: Kohonen Neural Network update algorithm

The input values are obtained by examining all the pixels in the input image exactly
once, dividing the scan into 100 cycles (sometimes a partial 101st cycle is needed). If the
input image contains N pixels, N

100
pixels are examined in each cycle. This is done by

choosing every P th pixel, where P is a prime number close to 500 which is not a factor of
N (our implementation chooses P to be 487, 491, 499 or 503). Thus each cycle involves
scanning the image 5 times, and after 100 cycles when every pixel has been examined once,
training stops. This multi-scan process is necessary because the learning process requires
the inputs to be randomly distributed. It would be possible to examine each pixel twice,
but this does not result in an improvement in performance. On the other hand, if only a
subset of pixels is examined, a lower-quality quantized image is obtained, but the algorithm
runs much faster.

We have not yet de�ned the `best' vector corresponding to an input. Kohonen [15, p 131]
suggests it be the closest vector, or the most highly correlated one. However, this does not

ensure a fair assignment of weight vectors to di�erent regions of the cube. In particular, if
all pixels are located in two non-overlapping regions A and B, with weight vector 0 located
in region A and weight vectors 1 : : : 255 in region B, then for every pixel in A, weight vector
0 will always be the closest, and the weight updating process will move weight vector 0
towards the centre of region A. After training is completed, all pixels in region A will be
mapped to weight vector 0, causing considerable distortion.

The solution to this problem was discovered by Desieno [14, p 69]. The `best' vector for
the input (R;G;B) is the weight vector (Ri; Gi; Bi) minimising:

jR �Rij+ jG�Gij+ jB �Bij � bi

where bi is a bias factor which increases for less frequently chosen vectors. This allows a
vector not to be chosen if it has been chosen `too many' times already. The bias bi is de�ned
by:

bi = 


�
1

256
� fi

�
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where 
 is a constant, and fi estimates the frequency at which weight vector i is closest
to the input. Initially fi =

1
256

and hence bi = 0. When scanning a pixel, we �rst �nd the
weight vector closest to the pixel (this must be done by a linear scan, since the network is
in a state of 
ux), and update fi with:

fi := fi � �fi + �

while the other weight vectors are updated with:

fi := fi � �fi

Since fi and bi change slowly, we can perform the search for the closest weight vector to
the input in the same loop as the search for the `best' vector to be updated, rather than
updating bi before searching for the `best' vector. We can also update bi directly with:

bi := bi + 
�fi � 
�

for the closest vector to the pixel, and:

bi := bi + 
�fi

for the other vectors. For this application, the best performance is obtained when � = 1
1024

and 
 = 1024, i.e. 
� = 1. This value of � is about the same as that suggested in [14, p 69],
but the value of 
 is considerably larger because our input values range from 0 to 255 rather

than 0 to 1. In order to maximise speed, we use integer arithmetic where possible.
With this scheme, if region A contains only one weight vector, that vector will develop a

large fi, and hence a large negative bi. As a consequence, some vectors in region B will be
considered to be `best,' and will be moved to region A. This scheme therefore ensures that
each neuron forms the centre of a cluster of pixels of approximately equal size. However,
the balance between distance and bias factors means that a small isolated group of pixels
will still be `allocated' a weight vector, even if the resulting cluster is smaller than average.
This is precisely the behaviour that we require in a colour quantization algorithm.

4 Analysis of the Network

The frequency bias factor ensures that the clusters Si of pixels mapping to the neurons
Ni contain approximately the same number of pixels. We can approximate the shape of
these clusters as spheres, with the pixels being distributed within the spheres according to
a probability distribution P .

The average shift in the weight vectorwi = (Ri; Gi; Bi) of neuronNi in response to input
pixels can be divided into two parts �wÆ

i and �w�
i . Here �w

Æ
i is the change in response to

input pixels that fall within the sphere Si, and �w�
i the change in response to pixels falling

outside the sphere Si. For the last 14 steps of training, when the neighbourhood radius r is
less than 2, we have �w�

i = 0. As described in [18, p 243], the shift �wÆ
i is given by:

�wÆ
i =

Z
Si

�(v �wi)P (v) dv

where the integral is taken over input pixels v = (R;G;B) within the cluster Si. As the
weight vectorwi moves towards the centre of gravity of the cluster, this change tends towards
zero.

When the weight vectors wi and wi+1 of two adjacent neurons are closer than the sum
of the radii of the spheres Si and Si+1, the spheres will overlap. The overlapping region is
then split into two regions Ti in which the pixels are closest to wi and Ui+1 in which the
pixels are closest to wi+1. The average shift �w

Æ
i is then given by:

�wÆ
i =

Z
Si�Ui+1

�(v �wi)P (v) dv +

Z
Ui+1

�

 
1�

1

brc
2

!
(v �wi)P (v) dv
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This holds for r � 1. If r < 1 the neighbourhood e�ect is zero, and this is equivalent to the
case when r = 1. This equation can be simpli�ed to:

�wÆ
i =

Z
Si

�(v �wi)P (v) dv �

Z
Ui+1

�

brc
2
(v �wi)P (v) dv

Since the �rst integral tends to zero as the weight vector wi moves towards the centre of
gravity of the cluster Si, this gives a net shift of wi away from the overlapping cluster Si+1.
Thus the overlap of the spheres Si and Si+1 results in a `repulsive force' which tends to
reduce the overlap.

For the �rst 86 steps, when the neighbourhood radius r � 2, the average shift �w�
i in

response to input pixels in clusters Si+1; : : : ; Si+r�1 and Si�1; : : : ; Si�r+1 is given by:

�w�
i =

X
1�jkj<r

Z
Si+k

�

 
1�

k2

brc
2

!
(v �wi)P (v) dv

Taking the approximation
R
Si
vP (v) dv = wi we obtain:

�w�
i =

X
1�jkj<r

�

 
1�

k2

brc
2

!
(wi+k �wi)

This tends to shift wi towards the centre of gravity of the clusters Si�r+1; : : : ; Si+r�1, giving
the network its `elastic' nature. However, this is balanced by the fact that neurons must be
evenly distributed over the entire region of the colour space which is occupied by pixels.

It is instructive to consider the simple case where the neurons Ni�r+1; : : : ; Ni+r�1 are
arranged in a straight line, spaced equally except for a larger space between Ni and Ni�1.
In other words, there are vectors q and t such that for k > 0,

wi+k = wi + kq

wi�k = wi � kq� t

For this case we obtain:

�w�
i =

X
1�k<r

�

 
1�

k2

brc
2

!
kq �

X
1�k<r

�

 
1�

k2

brc
2

!
(kq+ t)

= ��
X

1�k<r

 
1�

k2

brc
2

!
t

= ��

�
2brc

3
�
1

2
�

1

6brc

�
t

= �c t

where c is some positive number (since r � 2). Hence we have an average shift of wi towards
wi�1. Thus there is an `attractive force' which tends to reduce unusually large distances
between adjacent neurons. This tends to ensure that adjacent weight vectors represent
similar colours, and that the network has the required continuity properties.

The compromise between the distribution of neurons over the colour space and the
`elastic' nature of the network not only gives these continuity properties, but results in the
network forming a fractal space-�lling curve [11], as shown in �gure 3. The network in �gure
3 has an estimated fractal dimension of 1.6 (the average for the twelve test images is 1.51).
The exact relationship between this fractal dimension and the informational properties of
the network has yet to be clari�ed.

5 Testing the Colour Maps

It is possible to combine the colour map produced by the Kohonen Neural Network with a
Floyd-Steinberg dithering step [6, p 139] which distributes the mapping error

jR�Rij+ jG�Gij+ jB �Bij
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for a pixel to the surrounding pixels. The e�ect is to ensure that errors in adjacent pixels
compensate for each other to some extent. However, we have found that this dithering
process actually degrades image quality, since the mean mapping error produced by the
Kohonen Neural Network is quite low.

We have tested the Kohonen Neural Network quantization algorithm and compared
it with three existing quantization algorithms provided as part of the xv image processing
package [5]. The xvquick algorithm uses post-clustering with a �xed map of 216 colours, and
dithering to allow adjacent pixel errors to compensate for each other. The xvslow algorithm
uses Median Cut quantization together with dithering, while the xvbest algorithm, originally
due to [17], uses Sophisticated Median Cut without dithering. We have also compared the
Kohonen Neural Network quantization algorithm with a non-dithering implementation of
the Oct-Tree algorithm.

We provide two comparisons of algorithm performance. The �rst is simply the mean
mapping error jR�Rij+ jG�Gij+ jB �Bij, while the second is the mean mapping error
calculated after a smoothing operation on both the input and output images, using the
following �lter:

1 2 1
2 4 2
1 2 1

Calculating the mean mapping error after smoothing e�ectively calculates the error for
2 � 2 squares centred on each pixel. Taking into account neighbouring pixels in this way
indicates the extent to which neighbouring errors cancel out, so that dithering will reduce
the smoothed error while increasing the unsmoothed mean mapping error.

The following results are the mean for 12 input images (including 9 scanned photographs,
2 scanned works of art, and 1 ray-traced arti�cial image). All images were obtained from
JPEG and GIF images available on the Internet. These images were re-sampled at half
the original spatial resolution in order to restore full 24-bit colour depth. The �nal images
ranged in size from 37,762 to 325,080 pixels with between 13,165 and 193,529 distinct colour
in each image. The quantization results are summarised in table 2. For each test image, the
Kohonen Neural Network gave a smaller mean mapping error than the other four algorithms.
In 9 out of the 12 images the smoothed error was also smaller, in spite of the fact that no
dithering was used.

Table 2: Average Mean Mapping Errors for 12 Sample Images

Algorithm Mean Mapping Error Smoothed Error

xvquick (dithered) 49.58 7.72
xvslow (dithered) 12.15 3.27
xvbest (non-dithered) 9.28 7.20
Oct-Trees (non-dithered) 8.96 5.92
Kohonen Network 5.34 2.96

Subjectively, the xvquick and xvslow algorithms produced images which often had visible
`grain' due to dithering. This was especially noticeable on enlargement. In the case of one
complex image the xvslow algorithm also produced visible artifacts (patches of incorrect
colour). The xvbest algorithm in several cases produced signi�cant banding artifacts on
smooth colour gradients (this was especially noticeable in the ray-traced image). The Oct-
Tree algorithm produced images inferior in appearance to those produced by xvbest, with
signi�cant banding artifacts and patches of incorrect colour. Artifacts can occur with the
Oct-Tree algorithm because the clustering is insuÆciently 
exible. In particular, when a
group of pixels in the colour space is located near the intersection of several cubes, similar
pixels on opposite sides of the cube boundary are quantized in di�erent ways.

The image produced by our algorithm was similar or superior in appearance when com-
pared with the other algorithms in each case, and showed �ne detail with less distortion.
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In particular, the random element in our algorithm ensures that banding artifacts are not
produced, but that colour gradients appear smooth, while at the same time not producing
visible `grain.'

The CPU time taken for each algorithm on a SUN SPARCstation IPC with 24 MB
of memory and a 64 kB write-through cache is summarised in table 3. Since the time
depends on image size, it is reported as microseconds per pixel. This CPU time grossly
underestimates the actual running time of the Oct-Tree algorithm on very large images,
which can be up to 10 times longer, due to memory swapping.

Table 3: Average CPU time taken for 12 Sample Images

Algorithm CPU time (�s/pixel)

xvquick (dithered) 17 (� 18%)
xvslow (dithered) 72 (� 132%)
xvbest (non-dithered) 420 (� 201%)
Oct-Trees (non-dithered) 141 (� 145%)
Kohonen Network 875 (� 6%)

It can be seen that our basic algorithm is on average twice as slow as xvbest, 6 times
slower than Oct-Trees, and 12 times slower than xvslow . There was less variation in time
with our algorithm than with the other algorithms, so that in fact our algorithm ranged
from 5 times slower than xvbest to 40% faster.

The space overhead for our algorithm is very small: only 8 kB are needed to store the
necessary arrays, in addition to the space required to store the input image. The space
usage for the xvbest and xvslow quantization algorithms (excluding space to store the input
image) was measured by subtracting the xvquick program space usage from the total xvbest
and xvslow program space usage. The results are shown in table 4. The space used by xvbest
depended on the number of distinct colours, with the line of best �t being approximately
1200 kB of �xed overhead, plus 5 kB for each 1000 distinct colours. The space used by the
Oct-Tree algorithm also depended on the number of distinct colours, with the line of best
�t being approximately 100 kB per 1000 distinct colours. This usage was particularly high,
and led to a large amount of memory swapping. There are implementations of the Oct-Tree
algorithm which reduce space usage by not building the entire tree, but these have even
lower-quality output images.

Table 4: Average space usage for quantization algorithms

Algorithm Space usage (kB)

xvslow (dithered) 521
xvbest (non-dithered) 1,100{2,100
Oct-Trees (non-dithered) 2,300{17,000
Kohonen Network 8

Following these experiments, we modi�ed our algorithm to sample only a subset of pixels
during training. Table 5 shows the performance of the algorithm for various sampling factors
n (i.e. when sampling only 1

n
of the pixels). The timing results satisfy closely the line of

best �t 36 + 838
n

microseconds per pixel. A sampling factor of 3 gives a signi�cant speed
improvement with very little observable change in quality, running faster than xvbest. A
sampling factor of 10 gives a slight quality reduction, but still visibly better (and with
smaller mean mapping error) than existing methods, while running faster than xvbest or Oct-
Trees. A sampling factor of 30 produces images of only slightly better quality than existing
methods, but runs faster than all but xvquick (which uses a �xed colour map). Sampling
factors greater than 30 produce only small speed improvements, and are not worthwhile. It
should be noted that with sampling factors greater than 3, the smoothed error is greater
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than for xvslow (although the mean mapping error is much lower). However, the image
produced by xvslow is subjectively poorer than our algorithm even with a sampling factor
of 30, due to the `grain' introduced by dithering.

Table 5: Network results for various sampling factors

Factor CPU time (�s/pixel) Mean Mapping Error Smoothed Error Final �

1 875 (� 6%) 5.34 2.96 0.05
3 314 (� 8%) 5.55 3.27 0.05
6 175 (� 9%) 5.81 3.54 0.05
10 119 (� 15%) 5.97 3.71 0.06
30 65 (� 19%) 6.53 4.26 0.10
60 52 (� 26%) 6.73 4.45 0.15

To compensate for the reduced sampling of pixels, the value of � must be decreased more
slowly than in the basic algorithm. Best performance was obtained if the �nal values of �
were as shown in table 5.

In summary, with a useful range of sampling factors from 3 to 30, our quantization algo-
rithm using Kohonen Neural Networks gives signi�cantly better output images than Median
Cut or Oct-Trees, or slightly better output images in less time. In addition, much less space
is used. The low space overhead suggests that the algorithm would run signi�cantly faster on
a machine with a copy-back cache [20], where the network could be stored entirely in-cache.
This would allow the weight vector updating process to be performed without memory ref-
erences, speeding learning. Analysis of the machine code produced by the cc optimising
compiler suggests that this should approximately double the speed of our algorithm, when
sampling the entire image. It is somewhat surprising that sampling only 1

30
to 1

3
of an image

can produce a good colour map, but this re
ects the fact that even small features of an image
contain several pixels, and the fact that our sampling (using prime number increments) is
essentially random.

6 Exploiting the Topological Properties

A quantized colour image consists of a colour map (R0; G0; B0); : : : ; (R255; G255; B255), to-
gether with an array of one-byte pixels. Each byte i 2 0 : : : 255 indexes a representative
(Ri; Gi; Bi). However, if we ignore the colour map, the array can be viewed as a grey-scale
image, with each byte i ranging from 0 (black) to 255 (white). We call this a false-grey

image, since the representation is just the reverse of a false-colour image (which uses colour
to represent grey-scale information). For most colour quantization schemes, the false-grey
image appears to consist of random noise, since there is no relationship between adjacent
bytes i and i+ 1. However, for our algorithm, the continuity properties discussed above
ensure that an area of similar colour is usually quantized as similar bytes, and that similar
bytes represent similar colours. This ensures that the false-grey image is a meaningful image.
Each shade of grey in the false-grey image represents a colour in the original image.

Figure 5 shows the test image corresponding to �gures 1 and 3. The image is of a
woman in a faded blue denim jacket. An examination of �gure 1 shows that the greatest
concentrations of pixels are at the lower left of the cube (black), the upper right (white), a
curve from black to white on the red side of the main diagonal (corresponding to shades of tan
for the model's skin), and a curve from black to white on the blue side of the main diagonal
(corresponding to shades of unsaturated blue for the denim jacket). The corresponding
false-grey image is shown in �gure 6.

Figure 3 shows the neural network after training. The mean mapping error for this image
is 6.99. This error is kept low since the network follows the distribution of pixels, as can be
seen by comparing �gures 1 and 3. For discussion purposes, we can divide the network into
11 equal-sized regions 0 : : : 10. The network ranges from black (lower left corner, 0), to dark
brown (loop towards right, 1), to dark shades of blue (large loop upwards, 2), to shades of
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Figure 5: A colour image with 122,227 distinct colours
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tan of increasing brightness (jagged line towards right, 3{5), to lighter shades of blue (loop
at top of cube, 6{7), to white (top right, 8), to shades of tan of decreasing brightness (jagged
line towards left, 9{10). The range 3{5 contains two regions of red colour, which are most
noticeable on the G-R projection in the top left of �gure 3. The transitions between blue and
tan correspond to shades of grey (which occur in the shadowed areas of the background).

The corresponding false-grey image (�gure 6) shows the regions 0 : : : 10 as shades of grey
from black (0) to white (10). It can be seen that there are two blue regions corresponding
to the jacket (the darker 2 and the lighter 6{7) and two tan regions corresponding to the
model's skin (the darker 3{5 and the lighter 9{10). The second of these, which corresponds to
the highlights on the model's skin, represents shades of tan of decreasing brightness. Hence
in the false-grey image the lighter highlights appear darker (9) and the darker highlights
appear lighter (10). This results in a visible discontinuity on the model's skin, between two
shades of tan (5 and 10). Nevertheless, since there are only two major discontinuities, the
false-grey image is still a meaningful image, and colour information can be deduced from it.

Since the false-grey image is a meaningful grey-scale image, it can be compressed using
grey-scale image compression techniques. The fact that adjacent neurons represent similar
colours ensures that small compression errors result in small changes in colour. We can
represent a compressed quantized colour image by adding a 4-byte header and 768-byte
colour map to the compressed false-grey image. We have compressed our test images in
this way, using the JPEG compression algorithm [21, 12]. A 95% quality factor was used.
For comparison, the original 24-bit image was compressed using the colour version of the
JPEG algorithm. Table 6 shows the mean results for the 12 test images. The mean mapping
error and smoothed error for the compressed false-grey image is shown with respect to the
quantized colour image, and do not include the quantization error. For the purpose of
display on an 8-bit colour display, quantization error would need to be added to both cases.
The size is shown as a percentage of the original 24-bit colour image in each case.

Table 6: Comparison of Colour and False-Grey Compression

Compressed Compressed Original
Quantized Image Colour Image

Size (% of original image) 17.1 14.4
Mean Mapping Error 10.85 7.62
Smoothed Error 5.07 3.62

Subjectively the compressed false-grey image is inferior to the compressed 24-bit colour
image, with visible `grain' similar to that produced by dithering. This is due to random high-
frequency components introduced by variation between neighbours in the neural network.
The compressed false-grey image is larger as well as being poorer in quality. However, the
experiment does demonstrate that the false-grey image is suÆciently meaningful for grey-
scale image compression algorithms to apply, with reasonable compression ratios and errors.

This is not the case for grey-scale images consisting of random noise. It is anticipated that
compression of the false-grey image will be suitable for applying Fractal Image Compression
Techniques [1, 2] to colour images.

The fact that adjacent representatives represent similar colours also makes the colour map
more meaningful for use with image processing software. Existing quantization algorithms
produce a colour map which appears to be a random arrangement of 256 colours, while our
algorithm produces a consistent palette of colours. In addition, colour editing of an image
could usefully be performed interactively by selecting parts of the network with a mouse and
`dragging' the neural network through the colour space. The movement would follow the
weight vector updating process shown in �gure 4, with a neighbourhood size speci�ed by
the user. For the purpose of such colour palette editing, it would be convenient to represent
the colour space in the HSV (Hue, Saturation, Value) format [6, p 333], rather than as an
RGB cube.

We are currently investigating the use of Kohonen Neural Networks for predictive image
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Figure 6: False-grey image for an image with 122,227 distinct colours
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compression, by adding output facilities to neurons as described in [19] and [18].

7 Related Work

A preliminary version of these results was presented in [9]. Self-Organizing Neural Net-
works have also been independently applied to colour quantization by Chen, Kothari and
Klinkhachorn [7]. They use a less sophisticated training process based on [15], but with
neighbourhoods having a �xed radius of 2. However, they reduce training time by a factor
of 9 by using the average of 3� 3 blocks of pixels as training vectors, rather than the pixels
themselves. This provides a useful way of providing lower-quality output in less time. How-
ever, since these workers do not present experimental results, it is not clear to what extent
the �xed-size neighbourhood and pixel averaging degrade performance. Similar work has
also been performed by Jeanny Herault at TIRF, Grenoble. However, none of the previous
approaches has been widely adopted for practical use.

8 Conclusion

We have presented a new colour quantization algorithm for mapping 24-bit colour images
to 8-bit colour, using self-organizing Kohonen Neural Networks. With limited sampling, our

algorithm can produce output which is slightly better than that of the Oct-Tree and Median-
Cut algorithms, while running more quickly. If more pixels are sampled (at a signi�cant
speed penalty), very high quality images are obtained, with almost half the mean mapping
error, and with no contouring or other artifacts. The algorithm uses very little space (only
8 kB in addition to the space used to store the input image).

The colour map produced by our algorithm has useful continuity properties: similar
colours are usually quantized to similar representatives, and adjacent representatives rep-
resent similar colours. These properties allow the quantized image to be compressed using
grey-scale compression techniques, although the result is inferior to colour JPEG compres-
sion. The continuity properties also make the colour map more meaningful for use with
image processing software.
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