
The irace Package: User Guide

Manuel López-Ibáñez, Leslie Pérez Cáceres, Jérémie Dubois-Lacoste,

Thomas Stützle and Mauro Birattari

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

Version 3.1, July 12, 2018

Contents

1 General information 4
1.1 Background . 4
1.2 Version . 4
1.3 License . 4

2 Before starting 5

3 Installation 5
3.1 System requirements . 5
3.2 irace installation . 6

3.2.1 Install automatically within R . 6
3.2.2 Manual download and installation . 6
3.2.3 Local installation . 6
3.2.4 Testing the installation and invoking irace 7

4 Running irace 8
4.1 Step-by-step setup guide . 8
4.2 Setup example for ACOTSP . 12

5 Defining a configuration scenario 13
5.1 Target algorithm parameters . 13

5.1.1 Parameter types . 13
5.1.2 Parameter domains . 13
5.1.3 Conditional parameters . 14
5.1.4 Parameter file format . 14
5.1.5 Parameters R format . 14

5.2 Target algorithm runner . 16
5.2.1 Target runner executable program . 16
5.2.2 Target runner R function . 17

5.3 Target evaluator . 18
5.3.1 Target evaluator executable program . 19
5.3.2 Target evaluator R function . 19

5.4 Training instances . 19

1

5.5 Initial configurations . 21
5.6 Forbidden configurations . 21
5.7 Repairing configurations . 22

6 Parallelization 23

7 Testing (Validation) of configurations 24

8 Recovering irace runs 25

9 Output and results 26
9.1 Text output . 26
9.2 R data file (logFile) . 29
9.3 Analysis of results . 34

10 Advanced topics 40
10.1 Tuning budget . 40
10.2 Multi-objective tuning . 40
10.3 Tuning for minimizing computation time . 41
10.4 Hyper-pararameter optimization of machine learning methods 42
10.5 Heterogeneous scenarios . 42
10.6 Choosing the statistical test . 43
10.7 Complex parameter space constraints . 43
10.8 Unreliable target algorithms and immediate rejection 44
10.9 Ablation Analysis . 45
10.10 Postselection race . 45

11 List of command-line and scenario options 47
11.1 General options . 47
11.2 Elitist irace . 48
11.3 Internal irace options . 48
11.4 Target algorithm parameters . 50
11.5 Target algorithm execution . 50
11.6 Initial configurations . 51
11.7 Training instances . 51
11.8 Tuning budget . 51
11.9 Statistical test . 52
11.10 Adaptive capping . 52
11.11 Recovery . 53
11.12 Testing . 53

12 FAQ (Frequently Asked Questions) 53
12.1 Is irace minimizing or maximizing the output of my algorithm? 53
12.2 Is it possible to configure a MATLAB algorithm with irace? 54
12.3 My program works perfectly on its own, but not when running under irace. Is

irace broken? . 54
12.4 My program may be buggy and run into an infinite loop. Is it possible to set a

maximum timeout? . 54
12.5 When using the mpi option, irace is aborted with an error message indicating

that a function is not defined. How to fix this? 55

2

12.6 Error: 4 arguments passed to .Internal(nchar) which requires 3 55
12.7 How are relative filesystem paths interpreted by irace? 55
12.8 My parameter space is small enough that irace could generate all possible con-

figurations; however, irace generates repeated configurations and/or does not
generate some of them. Is this a bug? . 56

13 Resources and contact information 56

14 Acknowledgements 56

Bibliography 56

Appendix A Installing R 58
A.1 GNU/Linux . 58
A.2 OS X . 58
A.3 Windows . 58

Appendix B targetRunner troubleshooting checklist 58

Appendix C targetEvaluator troubleshooting checklist 61

Appendix D Glossary 61

Appendix E NEWS 62

3

1 General information

1.1 Background

The irace package implements an iterated racing procedure, which is an extension of Iterated
F-race (I/F-Race) [2]. The main use of irace is the automatic configuration of optimization and
decision algorithms, that is, finding the most appropriate settings of an algorithm given a set of
instances of a problem. However, it may also be useful for configuring other types of algorithms
when performance depends on the used parameter settings. It builds upon the race package by
Birattari and it is implemented in R. The irace package is available from CRAN:

https://cran.r-project.org/package=irace

More information about irace is available at http://iridia.ulb.ac.be/irace.

1.2 Version

The current version of the irace package is 3.1. Previous versions of the package can also be
found in the CRAN website.

The algorithm underlying the current version of irace and its motivation are described by
López-Ibáñez et al. [8]. The adaptive capping mechanism available from version 3.0 is
described by Pérez Cáceres et al. [10]. Details of the implementation before version 2.0 can
be found in a previous technical report [7].

Versions of irace before 2.0 are not compatible with the file formats detailed in this document.

1.3 License

The irace package is Copyright © 2018 and distributed under the GNU General Public License
version 3.0 (http://www.gnu.org/licenses/gpl-3.0.en.html). The irace package is free soft-
ware (software libre): You can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

The irace package is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.

Please be aware that the fact that this program is released as Free Software does not excuse
you from scientific propriety, which obligates you to give appropriate credit! If you write a
scientific paper describing research that made substantive use of this program, it is your obligation
as a scientist to (a) mention the fashion in which this software was used in the Methods section;
(b) mention the algorithm in the References section. The appropriate citation is:

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas Stützle, and
Mauro Birattari. The irace package: Iterated Racing for Automatic Algorithm Configu-
ration. Operations Research Perspectives, 3:43–58, 2016. doi: 10.1016/j.orp.2016.09.002

4

https://cran.r-project.org/package=irace
http://iridia.ulb.ac.be/irace
https://cran.r-project.org/package=irace
http://www.gnu.org/licenses/gpl-3.0.en.html
http://dx.doi.org/10.1016/j.orp.2016.09.002

Training
instances

Parameter
space

Configuration
scenario

targetRunner

calls with θ,i returns c(θ,i)
iraceirace

Figure 1: Scheme of irace flow of information.

2 Before starting

The irace package provides an automatic configuration tool for tuning optimization algorithms,
that is, automatically finding good configurations for the parameters values of a (target) algo-
rithm saving the effort that normally requires manual tuning.

Figure 1 gives a general scheme of how irace works. Irace receives as input a parameter
space definition corresponding to the parameters of the target algorithm that will be tuned, a
set of instances for which the parameters must be tuned for and a set of options for irace that
define the configuration scenario. Then, irace searches in the parameter search space for good
performing algorithm configurations by executing the target algorithm on different instances
and with different parameter configurations. A targetRunner must be provided to execute the
target algorithm with a specific parameter configuration (θ) and instance (i). The targetRunner
function (or program) acts as an interface between the execution of the target algorithm and
irace: It receives the instance and configuration as arguments and must return the evaluation of
the execution of the target algorithm.

The following user guide contains guidelines for installing irace, defining configuration sce-
narios, and using irace to automatically configure your algorithms.

3 Installation

3.1 System requirements

• R (version ≥ 2.15) is required for running irace, but you don’t need to know the R language
to use it. R is freely available and you can download it from the R project website (https:
//www.r-project.org). See Appendix A for a quick installation guide of R.

• For GNU/Linux and OS X, the command-line executables irace and parallel-irace require
GNU Bash. There is also an irace.bat for Windows. Individual examples may require
additional software.

5

https://www.r-project.org
https://www.r-project.org

3.2 irace installation

The irace package can be installed automatically within R or by manual download and installa-
tion. We advise to use the automatic installation unless particular circumstances do not allow
it. The instructions to install irace with the two mentioned methods are the following:

3.2.1 Install automatically within R

Execute the following line in the R console to install the package:

install.packages("irace")

Select a mirror close to your location, and test the installation in the R console with:

library("irace")

q() # To exit R

Alternatively, within the R graphical interface, you may use the Packages and data->Package

installer menu on OS X or the Packages menu on Windows.

3.2.2 Manual download and installation

From the irace package CRAN website (https://cran.r-project.org/package=irace), down-
load one of the three versions available depending on your operating system:

• irace_3.1.tar.gz (Unix/BSD/GNU/Linux)

• irace_3.1.tgz (OS X)

• irace_3.1.zip (Windows)

To install the package on GNU/Linux and OS X, you must execute the following command
at the shell (replace <package> with the path to the downloaded file, either irace_3.1.tar.gz
or irace_3.1.zip):

R CMD INSTALL <package>

To install the package on Windows, open R and execute the following line on the R console
(replace <package> with the path to the downloaded file irace_3.1.zip):

install.packages("<package>", repos = NULL)

If the previous installation instructions fail because of insufficient permissions and you do
not have sufficient admin rights to install irace system-wide, then you need to force a local
installation.

3.2.3 Local installation

Let’s assume you wish to install irace on a path denoted by <R_LIBS_USER>, which is a filesystem
path for which you have sufficient rights. This directory must exist before attempting the
installation. Moreover, you must provide to R the path to this library when loading the package.

6

https://cran.r-project.org/package=irace

However, the latter can be avoided by adding the path to the system variable R_LIBS or to the
R internal variable .libPaths, as we will see below.1

On GNU/Linux or OS X, execute the following commands to install the package on a local
directory:

export R_LIBS_USER="<R_LIBS_USER>"

Create R_LIBS_USER if it doesn't exist

mkdir $R_LIBS_USER

Replace <package> with the path to the downloaded file.

R CMD INSTALL --library=$R_LIBS_USER <package>

Tell R where to find R_LIBS_USER

export R_LIBS=${R_LIBS_USER}:${R_LIBS}

On Windows, you can install the package on a local directory by executing the following lines
in the R console:

Replace <package> with the path to the downloaded file.

Replace <R_LIBS_USER> with the path used for installation.

install.packages("<package>", repos = NULL, lib = "<R_LIBS_USER>")

Tell R where to find R_LIBS_USER.

This must be executed for every new session.

.libPaths(c("<R_LIBS_USER>", .libPaths()))

3.2.4 Testing the installation and invoking irace

Once irace has been installed, load the package and test that the installation was successful by
opening an R console and executing:

Load the package

library("irace")

Obtain the installation path

system.file(package = "irace")

The last command must print out the filesystem path where irace is installed. In the remain-
der of this guide, the variable $IRACE_HOME is used to denote this path. When executing any
provided command that includes the $IRACE_HOME variable do not forget to replace this variable
with the installation path of irace.

On GNU/Linux or OS X, you can let the operating system know where to find irace by
defining the $IRACE_HOME variable and adding it to the system PATH. Append the following
commands to ~/.bash_profile, ~/.bashrc or ~/.profile:

Replace <IRACE_HOME> with the irace installation path

export IRACE_HOME=<IRACE_HOME>

export PATH=${IRACE_HOME}/bin/:$PATH

Tell R where to find R_LIBS_USER

Use the following line only if local installation was forced

export R_LIBS=${R_LIBS_USER}:${R_LIBS}

1On Windows, see also https://cran.r-project.org/bin/windows/base/rw-FAQ.html#I-don_0027t-have-

permission-to-write-to-the-R_002d3_002e3_002e1_005clibrary-directory.

7

https://cran.r-project.org/bin/windows/base/rw-FAQ.html#I-don_0027t-have-permission-to-write-to-the-R_002d3_002e3_002e1_005clibrary-directory
https://cran.r-project.org/bin/windows/base/rw-FAQ.html#I-don_0027t-have-permission-to-write-to-the-R_002d3_002e3_002e1_005clibrary-directory

Then, open a new terminal and launch irace as follows:

irace --help

On Windows, you need to add both R and the installation path of irace to the environment
variable PATH. To edit the PATH, search for “Environment variables” in the control panel, edit PATH
and add a string similar to C:\R_PATH\bin;C:\IRACE_HOME\bin where R_PATH is the installation
path of R and IRACE_HOME is the installation path of irace. If irace was installed locally, you also
need to edit the environment variable R_LIBS to add R_LIBS_USER. Then, open a new terminal
(run program cmd.exe) and launch irace as:

irace.bat --help

Alternatively, you may directly invoke irace from within the R console by executing:

library("irace")

irace.cmdline("--help")

4 Running irace

Before performing the tuning of your algorithm, it is necessary to define a tuning scenario that
will give irace all the necessary information to optimize the parameters of the algorithm. The
tuning scenario is composed of the following elements:

1. Target algorithm parameter description (see Section 5.1).

2. Target algorithm runner (see Section 5.2).

3. Training instances list (see Section 5.4)

4. irace options (see Section 11).

5. Optional: Initial configurations (see Section 5.5).

6. Optional: Forbidden configurations (see Section 5.6).

7. Optional: Target algorithm evaluator (see Section 5.3).

These scenario elements can be provided as plain text files or as R objects. This user guide
provides examples of both types, but we advise the use of plain text files, which we consider the
simpler option.

For a step-by-step guide to create the scenario elements for your target algorithm continue
to Section 4.1. For an example execution of irace using the ACOTSP scenario go to Section 4.2.

4.1 Step-by-step setup guide

This section provides a guide to setup a basic execution of irace. The template files provided
in the package ($IRACE_HOME/templates) will be used as basis for creating your new scenario.
Please follow carefully the indications provided in each step and in the template files used; if you
have doubts check the the sections that describe each option in detail.

8

1. Create a directory (e.g., ~/tuning/) for the scenario setup. This directory will contain all
the files that describe the scenario. On GNU/Linux or OS X, you can do this as follows:

mkdir ~/tuning

cd ~/tuning

2. Copy all the template files from the $IRACE_HOME/templates/ directory to the scenario
directory.

$IRACE_HOME is the installation directory of irace.

cp $IRACE_HOME/templates/*.tmpl ~/tuning/

3. For each template in your tuning directory, remove the .tmpl suffix, and modify them
following the next steps.

4. Define the target algorithm parameters to be tuned by following the instructions in parameters.txt.
Available parameter types and other guidelines can be found in Section 5.1.

5. Optional : Define the initial parameter configuration(s) of your algorithm, which allows you
to provide good starting configurations (if you know some) for the tuning. Follow the in-
structions in configurations.txt and set configurationsFile="configurations.txt"

in scenario.txt. More information in Section 5.5. If you do not need to define initial
configurations remove this file from the directory.

6. Optional : Define forbidden parameter value combinations, that is, configurations that irace

must not consider in the tuning. Follow the instructions in forbidden.txt and update
scenario.txt with forbiddenFile = "forbidden.txt". More information about forbidden
configurations in Section 5.6. If you do not need to define forbidden configurations remove
this file from the directory.

7. Place the instances you would like to use for the tuning of your algorithm in the folder
~/tuning/Instances/. In addition, you can create a file (e.g., instances-list.txt) that
specifies which instances from that directory should be run and which instance-specific pa-
rameters to use. To use such an instance file, set the appropriate option in scenario.txt,
e.g., trainInstancesFile = "instances-list.txt". See Section 5.4 for guidelines.

8. Uncomment and assign in scenario.txt only the options for which you need a value different
from the default. Some common parameters that you might want to adjust are:

execDir (--exec-dir): the directory in which irace will execute the target algorithm; the
default value is the current directory.

maxExperiments (--max-experiments): the maximum number of executions of the target
algorithm that irace will perform.

maxTime (--max-time): the total maximum execution time of the target algorithm. Note
that you must provide either maxTime or maxExperiments.

For setting the tuning budget see Section 10.1. For more information on irace options and
their default values, see Section 11.

9

9. Modify the target-runner script to run your algorithm. This script must execute your
algorithm with the parameters and instance specified by irace and return the evaluation of
the execution and optionally the execution time (cost [time]). When the maxTime option
is used, returning time is mandatory. The target-runner template is written in GNU

Bash scripting language, which can be executed easily in GNU/Linux and OS X systems.
However, you may use any other programming language. As an example, we provide a
Python example in the directory $IRACE_HOME/examples/python. Follow these instructions
to adjust the given target-runner template to your algorithm:

(a) Set the EXE variable with the path to the executable of the target algorithm.

(b) Set the FIXED_PARAMS if you need extra arguments in the execution line of your algo-
rithm. An example could be the time that your algorithm is required to run (FIXED_PARAMS
="--time 60") or the number of evaluations required (FIXED_PARAMS="--evaluations
10000").

(c) The line provided in the template executes the executable described in the EXE variable.

$EXE ${FIXED_PARAMS} -i ${INSTANCE} --seed ${SEED} ${CONFIG_PARAMS}

You must change this line according to the way your algorithm is executed. In this
example, the algorithm receives the instance to solve with the flag -i and the seed of
the random number generator with the flag --seed. The variable CONFIG_PARAMS adds
to the command line the parameters that irace has given for the execution. You must
set the command line execution as needed. For example, the instance might not need
a flag and might need to be the first argument:

$EXE ${INSTANCE} ${FIXED_PARAMS} --seed ${SEED} ${CONFIG_PARAMS}

The output of your algorithm is saved to the file defined in the $STDOUT variable, and
error output is saved in the file given by $STDERR. The line:

if [-s "$STDOUT"]; then

checks if the file containing the output of your algorithm is not empty. The example
provided in the template assumes that your algorithm prints in the last output line the
best result found (only a number). The line:

COST=$(cat ${STDOUT} | grep -e 'ˆ[[:space:]]*[+-]\?[0-9]' | cut -f1)

parses the output of your algorithm to obtain the result from the last line. The
target-runner script must return only one number. In the template example, the
result is returned with echo "$COST" (assuming maxExperiments is used) and the
used files are deleted.

The target-runner script must be executable.

You can test the target runner from the R console by checking the scenario as explained
earlier in Section 4.

If you have problems related to the target-runner script when executing irace, see
Appendix B for a check list to help diagnose common problems. For more information
about the targetRunner, please see Section 5.2,

10. Optional : Modify the target-evaluator file. This is rarely needed and the target-runner

template does not use it. Section 5.3 explains when a targetEvaluator is needed and how
to define it.

10

11. The irace executable provides an option (--check) to check that the scenario is correctly
defined. We recommend to perform a check every time you create a new scenario. When
performing the check, irace will verify that the scenario and parameter definitions are correct
and will test the execution of the target algorithm. To check your scenario execute the
following commands:

• From the command-line (on Windows, execute irace.bat):

$IRACE_HOME is the installation directory of irace.

$IRACE_HOME/bin/irace --scenario scenario.txt --check

• Or from the R console:

library("irace")

scenario <- readScenario(filename = "scenario.txt",

scenario = defaultScenario())

checkIraceScenario(scenario = scenario)

12. Once all the scenario elements are prepared you can execute irace, either using the command-
line wrappers provided by the package or directly from the R console:

• From the command-line console, call the command (on Windows, you should execute
irace.bat):

cd ~/tuning/

$IRACE_HOME is the installation directory of irace

By default, irace reads scenario.txt, you can specify a different file

with --scenario.

$IRACE_HOME/bin/irace

For this example we assume that the needed scenario files have been set properly in the
scenario.txt file using the options described in Section 11. Most irace options can be
specified in the command line or directly in the scenario.txt file.

• From the R console, evaluate:

library("irace")

Go to the directory containing the scenario files

setwd("~/tuning")

scenario <- readScenario(filename = "scenario.txt",

scenario = defaultScenario())

irace.main(scenario = scenario)

This will perform one run of irace. See the output of irace --help in the command-line
or irace.usage() in R for quick information on additional irace parameters. For more
information about irace options, see Section 11.

Command-line options override the same options specified in the scenario.txt file.

11

4.2 Setup example for ACOTSP

The ACOTSP tuning example can be found in the package installation at $IRACE_HOME/examples/
acotsp. Additionally, a number of example scenarios can be found in the examples folder.
More examples of tuning scenarios can be found in the Algorithm Configuration Library (AClib,
http://www.aclib.net/).

In this section, we describe how to execute the ACOTSP scenario. If you wish to start setting
up your own scenario, continue to the next section. For this example, we assume a GNU/Linux
system but making the necessary changes in the commands and targetRunner, it can be executed
in any system that has a C compiler. To execute this scenario follow these steps:

1. Create a directory for the tuning (e.g., ~/tuning/) and copy the example scenario files
located in the examples folder to the created directory:

mkdir ~/tuning

cd ~/tuning

$IRACE_HOME is the installation directory of irace.

cp $IRACE_HOME/examples/acotsp/* ~/tuning/

2. Download the training instances from http://iridia.ulb.ac.be/irace/ to the ~/tuning/
directory.

3. Create the instance directory (e.g., ~/tuning/Instances) and decompress the instance files
on it.

mkdir ~/tuning/Instances/

cd ~/tuning/

tar -xvf tsp-instances-training.tar.bz2 Instances/

4. Download the ACOTSP software from http://www.aco-metaheuristic.org/aco-code/ to
the ~/tuning/ directory and compile it.

cd ~/tuning/

tar -xvf ACOTSP-1.03.tgz

cd ~/tuning/ACOTSP-1.03

make

5. Create a directory for the executable and copy it:

mkdir ~/bin/

cp ~/tuning/ACOTSP-1.03/acotsp ~/bin/

6. Create a directory for executing the experiments and execute irace:

mkdir ~/tuning/acotsp-arena/

cd ~/tuning/

$IRACE_HOME is the installation directory of irace.

$IRACE_HOME/bin/irace

7. Or you can also execute irace from the R console using:

12

http://www.aclib.net/
http://iridia.ulb.ac.be/irace/
http://www.aco-metaheuristic.org/aco-code/

library("irace")

setwd("~/tuning/")

irace.cmdline()

5 Defining a configuration scenario

5.1 Target algorithm parameters

The parameters of the target algorithm are defined by a parameter file as described in Sec-
tion 5.1.4. Optionally, when executing irace from the R console, the parameters can be specified
directly as an R object (see Section 5.1.5). For defining your parameters follow the guidelines
provided in the following sections.

5.1.1 Parameter types

Each target parameter has an associated type that defines its domain and the way irace handles
them internally. Understanding the nature of the domains of the target parameters is important
to select appropriate types. The four basic types supported by irace are the following:

• Real parameters are numerical parameters that can take floating-point values within a given
range. The range is specified as an interval ‘(<lower bound>,<upper bound>)’. This interval
is closed, that is, the parameter value may eventually be one of the bounds. The possible
values are rounded to a number of decimal places specified by option digits. For example,
given the default number of digits of 4, the values 0.12345 and 0.12341 are both rounded
to 0.1234. Selected real-valued parameters can be optionally sampled on a logarithmic scale
(base e).

• Integer parameters are numerical parameters that can take only integer values within the
given range. Their range is specified as the range of real parameters and they can also be
optionally sampled on a logarithmic scale.

• Categorical parameters are defined by a set of possible values specified as ‘(<value 1>, ...,

<value n>)’. The values are quoted or unquoted character strings. Empty strings and strings
containing commas or spaces must be quoted.

• Ordinal parameters are defined by an ordered set of possible values in the same format as for
categorical parameters. They are handled internally as integer parameters, where the integers
correspond to the indexes of the values.

5.1.2 Parameter domains

For each target parameter, an interval or a set of values must be defined according to its type,
as described above. There is no limit for the size of the set or the length of the interval, but
keep in mind that larger domains could increase the difficulty of the tuning task. Choose always
values that you consider relevant for the tuning. In case of doubt, we recommend to choose larger
intervals, as occasionally best parameter settings may be not intuitive a priori. All intervals are
considered as closed intervals.

It is possible to define parameters that will have always the same value. Such “fixed ” param-
eters will not be tuned but their values are used when executing the target algorithm and they
are affected by constraints defined on them. All fixed parameters must be defined as categorical
parameters and have a domain of one element.

13

5.1.3 Conditional parameters

Conditional parameters are active only when others have certain values. These dependencies
define a hierarchical relation between parameters. For example, the target algorithm may have a
parameter localsearch that takes values (sa,ts) and another parameter ts-length that only
needs to be set if the first parameter takes precisely the value ts. Thus, parameter ts-length

is conditional on localsearch == "ts".

5.1.4 Parameter file format

For simplicity, the description of the parameters space is given as a table. Each line of the table
defines a configurable parameter

<name> <label> <type> <range> [| <condition>]

where each field is defined as follows:

<name> The name of the parameter as an unquoted alphanumeric string, e.g., ‘ants’.

<label> A label for this parameter. This is a string that will be passed together with
the parameter to targetRunner. In the default targetRunner provided with
the package (Section 5.2), this is the command-line switch used to pass the
value of this parameter, for instance ‘"--ants "’.
The value of the parameter is concatenated without separator to the label
when invoking targetRunner, thus any whitespace in the label is significant.
Following the same example, when parameter ants takes value 5, the default
targetRunner will pass the parameter as "--ants 5".

<type> The type of the parameter, either integer, real, ordinal or categorical, given as
a single letter: ‘i’, ‘r’, ‘o’ or ‘c’. Numerical parameters can be sampled using
a logarithmic scale with ’i,log’ and ’r,log’ (without spaces) for integer and
real parameters, respectively.

<range> The range or set of values of the parameter delimited by parentheses.
e.g., (0,1) or (a,b,c,d).

<condition> An optional condition that determines whether the parameter is enabled or
disabled, thus making the parameter conditional. If the condition evaluates to
false, then no value is assigned to this parameter, and neither the parameter
value nor the corresponding label are passed to targetRunner. The condition
must follow the same syntax as those for specifying forbidden configurations
(Section 5.6), that is, it must be a valid R logical expression2. The condition
may contain the name of other parameters as long as the dependency graph
does not contain any cycle. Otherwise, irace will detect the cycle and stop
with an error.

As an example, Figure 2 shows the parameters file of the ACOTSP scenario.

5.1.5 Parameters R format

The target parameters are stored in an R list that you can obtain from the R console using the
following command:

2For a list of R operators see: https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

14

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

name switch type values [conditions (using R syntax)]

algorithm "--" c (as,mmas,eas,ras,acs)

localsearch "--localsearch " c (0, 1, 2, 3)

alpha "--alpha " r (0.00, 5.00)

beta "--beta " r (0.00, 10.00)

rho "--rho " r (0.01, 1.00)

ants "--ants " i (5, 100)

nnls "--nnls " i (5, 50) | localsearch %in% c(1, 2, 3)

q0 "--q0 " r (0.0, 1.0) | algorithm == "acs"

dlb "--dlb " c (0, 1) | localsearch %in% c(1,2,3)

rasrank "--rasranks " i (1, 100) | algorithm == "ras"

elitistants "--elitistants " i (1, 750) | algorithm == "eas"

Figure 2: Parameter file (parameters.txt) for tuning ACOTSP.

parameters <- readParameters(file = "parameters.txt")

See the help of the readParameters function (?readParameters) for more information. The
structure of the parameter list that is created is as follows:

names Vector that contains the names of the parameters.

types Vector that contains the type of each parameter ’i’, ’c’, ’r’, ’o’.

switches Vector that contains the labels of the parameters. e.g., switches to be used
for the parameters on the command line.

domain List of vectors, where each vector may contain two values (minimum, maxi-
mum) for real and integer parameters, or a set of values for categorical and
ordinal parameters.

conditions List of R logical expressions, with variables corresponding to parameter
names.

isFixed Logical vector that specifies which parameter is fixed and, thus, it does not
need to be tuned.

transform Vector that contains the transformation of each parameter. Currently, it
can take values “” (no transformation, default) of “log” (logarithmic trans-
formation).

nbParameters An integer, the total number of parameters.

nbFixed An integer, the number of parameters with a fixed value.

nbVariable Number of variable (i.e., to be tuned) parameters.

The following example shows the structure of the parameters R object for the algorithm,
ants and q0 parameters of the ACOTSP scenario:

> str(parameters, vec.len = 10)

List of 11

$ names : chr [1:3] "algorithm" "ants" "q0"

$ types : Named chr [1:3] "c" "i" "r"

..- attr(*, "names")= chr [1:3] "algorithm" "ants" "q0"

$ switches : Named chr [1:3] "--" "--ants " "--q0 "

15

..- attr(*, "names")= chr [1:3] "algorithm" "ants" "q0"

$ domain :List of 3

..$ algorithm: chr [1:5] "as" "mmas" "eas" "ras" "acs"

..$ ants : num [1:2] 5 100

..$ q0 : num [1:2] 0 1

$ conditions :List of 3

..$ algorithm: logi TRUE

..$ ants : logi TRUE

..$ q0 : expression(algorithm %in% c("acs"))

$ isFixed : Named logi [1:3] FALSE FALSE FALSE

..- attr(*, "names")= chr [1:3] "algorithm" "ants" "q0"

$ transform : Named chr [1:3] "" "" ""

..- attr(*, "names")= chr [1:3] "algorithm" "ants" "q0"

$ hierarchy : Named num [1:3] 1 1 2

..- attr(*, "names")= chr [1:3] "algorithm" "ants" "q0"

$ nbParameters: int 3

$ nbFixed : int 0

$ nbVariable : int 3

5.2 Target algorithm runner

The evaluation of a candidate configuration on a single instance is done by means of a user-given
auxiliary program or, alternatively, a user-given R function. The function (or program name) is
specified by the option targetRunner. The targetRunner must return the cost value (e.g., cost
of the best solution found) of the evaluation; unless computing the cost requires information from
all the configurations evaluated on an instance, e.g., when evaluating multi-objective algorithms
with unknown normalisation bounds (see Section 5.3 for details).

The objective of irace is to minimize the cost value returned by the target algorithm. If you
wish to maximize, you can multiply the cost by -1 before returning it to irace.

5.2.1 Target runner executable program

When targetRunner is an auxiliary executable program, it is invoked for each candidate config-
uration, passing as arguments:

<id.configuration> <id.instance> <seed> <instance> [bound] <configuration>

id.configuration an alphanumeric string that uniquely identifies a configuration;

id.instance an alphanumeric string that uniquely identifies an instance;

seed seed for the random number generator to be used for this evaluation,
ignore the seed for deterministic algorithms;

instance string giving the instance to be used for this evaluation;

bound optional execution time bound. Only provided when adaptive capping is
enabled, see Section 10.3;

configuration the pairs parameter label-value that describe this candidate configuration.
Typically given as command-line switches to be passed to the executable
program.

16

The experiment list shown in Section 5.2.2, would result in the following execution line:

target-runner 1 113 734718556 /home/user/instances/tsp/2000-533.tsp \

--eas --localsearch 0 --alpha 2.92 --beta 3.06 --rho 0.6 --ants 80

The command line switches that describe the candidate configuration are constructed by ap-
pending to each parameter label (switch), without separator, the value of the parameter, following
the order given in the parameter table. The program targetRunner must print a real number,
which corresponds to the cost measure of the candidate configuration for the given instance and
optionally its execution time (mandatory when maxTime is used and/or when the capping option
is enabled). The working directory of targetRunner is set to the execution directory specified
by the option execDir. This allows the user to execute independent runs of irace in parallel
using different values for execDir, without the runs interfering with each other.

5.2.2 Target runner R function

When targetRunner is an R function, it is invoked for each candidate configuration as:

targetRunner(experiment, scenario)

where experiment is a list that contains information about configuration and instance to execute
one experiment, and scenario is the scenario list. The structure of the experiment list is as
follows:

id.configuration an alphanumeric string that uniquely identifies a configuration;

id.instance an alphanumeric string that uniquely identifies an instance;

seed seed to be used for this evaluation;

instance string giving the instance to be used for this evaluation;

bound optional execution time bound;

configuration 1-row data frame with a column per parameter name;

switches vector of parameter switches (labels) in the order of parameters used in
configuration.

The following is an example of an experiment list for the ACOTSP scenario:

> print(experiment)

$id.configuration

[1] 1

$id.instance

[1] 3

$seed

[1] 513870324

$configuration

algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank

1 as 0 1 1 0.95 10 NA NA <NA> NA

17

elitistants

1 NA

$instance

[1] "./instances/1000-3.tsp"

$switches

algorithm localsearch alpha beta

"--" "--localsearch " "--alpha " "--beta "

rho ants nnls q0

"--rho " "--ants " "--nnls " "--q0 "

dlb rasrank elitistants

"--dlb " "--rasranks " "--elitistants "

If targetEvaluator is NULL, then the targetRunner function must return a list with at
least one element "cost", the numerical value corresponding to the evaluation of the given
configuration on the given instance. A cost of Inf is accepted and results in the immediate
rejection of the configuration (see Section 10.8).

If the scenario option maxTime is non-zero or if the capping option is enabled, then the list
must contain at least another element "time" that reports the execution time for this call to
targetRunner.

The return list may also contain the following optional elements that are used by irace for
reporting errors in targetRunner:

error is a string used to report an error;

outputRaw is a string used to report the raw output of calls to an external program or
function;

call is a string used to report how targetRunner called an external program or func-
tion;

5.3 Target evaluator

Normally, targetRunner returns the cost of the execution of a candidate configuration (see Sec-
tion 5.2). However, there are cases when the cost evaluation must be delayed until all candidate
configurations in a race have been executed on a instance.

The targetEvaluator option defines an auxiliary program (or an R function) that allows
postponing the evaluations of the candidate configurations. For each instance seen, the program
targetEvaluator is only invoked after all the calls to targetRunner for all alive candidate
configurations on the same instance have already finished.

When using targetEvaluator, targetRunner must not return the evaluation of the
configuration. If maxTime is used, targetRunner must return only execution time.

As an example, targetEvaluator may be used to dynamically find normalization bounds for
the output returned by an algorithm for each individual instance. In this case, targetRunner
will save the output of the algorithm, then the first call to targetEvaluator will examine the
output produced by all calls to targetRunner for the same instance, update the normalization
bounds and return the normalized output. Subsequent calls to targetEvaluator for the same
instance will simply return the normalized output.

18

A similar need arises when using quality measures for multi-objective optimization algorithms,
such as the hypervolume, which typically require specifying reference points or sets. By using
targetEvaluator, it is possible to dynamically compute the reference points or sets while irace

is running. Examples are provided at examples/hypervolume. See also Section 10.2 for more
information on how to tune multi-objective algorithms.

5.3.1 Target evaluator executable program

When targetEvaluator is an auxiliary executable program, it is invoked for each candidate
with the following arguments:

<id.configuration> <id.instance> <seed> <instance> <num.configs> <all.conf.id>

id.configuration an alphanumeric string that uniquely identifies a configuration;

id.instance an alphanumeric string that uniquely identifies an instance;

seed seed to be used for this evaluation;

instance string giving the instance to be used for this evaluation;

num.configs number of alive candidate configurations;

all.conf.id list of IDs of the alive configurations separated by whitespace.

The targetEvaluator executable must print a numerical value corresponding to the cost
measure of the candidate configuration on the given instance.

5.3.2 Target evaluator R function

When targetEvaluator is an R function, it is invoked for each candidate configuration as:

targetEvaluator(experiment, num.configurations, all.conf.id,

scenario, target.runner.call)

where experiment is a list that contains information about one experiment (see Section 5.2.2),
num.configurations is the number of configurations alive in the race, all.conf.id is the vector
of IDs of the alive configurations, scenario is the scenario list and target.tunner.call is the
string of the targetRunner execution line.

The function targetEvaluator must return a list with one element "cost", the numerical
value corresponding to the cost measure of the given configuration on the given instance.

The return list may also contain the following optional elements that are used by irace for
reporting errors in targetEvaluator:

error is a string used to report an error;

outputRaw is a string used to report the raw output of calls to an external program or
function;

call is a string used to report how targetEvaluator called an external program or
function;

5.4 Training instances

The irace options trainInstancesDir and trainInstancesFile specify where to find the train-
ing instances. By default, the value of trainInstancesFile is empty. This means that irace will

19

consider all files within the directory given by trainInstancesDir (by default ./Instances) as
training instances.

Otherwise, the value of trainInstancesFile may specify a text file. The format of this
file is one instance per line. Within each line, elements separated by white-space will be parsed
as separate arguments to be supplied to targetRunner. This allows defining instance-specific
parameter settings. Quoted strings will be parsed as a single argument. The following example
shows a training instance file for the ACOTSP scenario:

Example training instances file

100/100-1_100-2.tsp --time 1

100/100-1_100-3.tsp --time 2

100/100-1_100-4.tsp --time 3

Figure 3: Training instances file for tuning ACOTSP.

The value of trainInstancesDir is always prefixed to the instance name, that is, the in-
stances names are treated as relative to this directory. For example, given the above file as
trainInstancesFile and the default value of trainInstancesDir (./Instances), then a pos-
sible invocation of targetRunner would be:

target-runner 1 113 734718 ./Instances/100/100-1_100-2.tsp --time 1 \

--alpha 2.92 ...

Training instances do not need to be files, irace just passes the elements of each line as
arguments to targetRunner, thus each line may denote the name of a benchmark function or a
label, plus instance-specific settings, that the target algorithm understands. Each line may even
be the command-line parameters required to call an instance generator within targetRunner.
When the instances do not represent actual files, then trainInstancesDir is usually set to the
empty string (--train-instances-dir=""). For example,

Example training instances file

rosenbrock_20 --function=12 --nvar 20

rosenbrock_30 --function=12 --nvar 30

rastrigin_20 --function=15 --nvar 20

rastrigin_30 --function=15 --nvar 30

Optionally, when executing irace from the R console, the list of instances might be provided
explicitly by means of the variable scenario$instances. Thus, the previous example would be
equivalent to:

scenario$instances <- c("rosenbrock_20 --function=12 --nvar 20",

"rosenbrock_40 --function=12 --nvar 30",

"rastrigin_20 --function=15 --nvar 20",

"rastrigin_40 --function=15 --nvar 30")

By default, irace assumes that the target algorithm is stochastic (the value of the option
deterministic is 0), thus, the same configuration can be executed more than once on the same
instance and obtain different results. In this case, irace generates pairs (instance,seed) by
generating a random seed for each instance. In other words, configurations evaluated on the
same instance use the same random seed. This is a well-known variance reduction technique
called common random numbers [9]. If all available pairs are used within a run of irace, new

20

pairs are generated with different seeds, that is, a configuration evaluated more than once per
instance will use different random seeds.

If deterministic is set to 1, then each instance will be used at most once per race. This
setting should only be used for target algorithms that do not have a stochastic behavior and,
therefore, executing the target algorithm on the same instance several times with different seeds
does not make sense.

If deterministic is active and the number of training instances provided to irace is less than
firstTest (default: 5), no statistical test will be performed on the race.

Finally, irace randomly re-orders the sequence of instances provided. This random sampling
may be disabled by using the option sampleInstances (--sample-instances 0) if keeping the
order provided in the instance file is important.

We advise to always sample instances to prevent biasing the tuning due to the instance order.
See also Section 10.5

5.5 Initial configurations

The scenario option configurationsFile allows specifying a text file that contains an initial set
of configurations to start the execution of irace. If the number of initial configurations supplied in
the file is less than the number of configurations required by irace in the first iteration, additional
configurations will be sampled uniformly at random.

The format of the configurations file is one configuration per line, and one parameter value
per column. The first line must give the parameter name corresponding to each column (names
must match those given in the parameters file). Each configuration must satisfy the parameter
conditions (NA should be used for those parameters that are not enabled for a given configuration)
and not be forbidden by the constraints that define forbidden configurations (Section 5.6), if any.

Figure 4 gives an example file that corresponds to the ACOTSP scenario.

Initial candidate configuration for irace

algorithm localsearch alpha beta rho ants nnls dlb q0 rasrank elitistants

as 0 1.0 1.0 0.95 10 NA NA 0 NA NA

Figure 4: Initial configuration file (default.txt) for tuning ACOTSP.

We advise to use this feature when a default configuration of the target algorithm exists or
when different sets of good parameter values are known. This will allow irace to start the search
from those parameter values and attempt to improve their performance.

5.6 Forbidden configurations

The scenario option forbiddenFile specifies a text file containing logical expressions of param-
eter values that valid configurations should not satisfy, that is, no configuration that satisfies
any of these logical expressions will be evaluated by irace. This is useful when some combination
of parameter values could cause the target algorithm to crash, consume excessive CPU time or
memory, or when it is known that they do no produce satisfactory results.

The format of the forbidden configurations file is one constraint per line, where each constraint
is a logical expression (in R syntax) containing parameter names as defined by the parameterFile
(Section 5.1), values and logical operators. For a list of R logical operators see:

21

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

If a parameter configuration is generated that makes any of the logical expressions evaluate
to TRUE, then the configuration is considered forbidden and it is discarded. Figure 5 shows an
example file that corresponds to the ACOTSP scenario.

Examples of valid logical operators are:

== != >= <= > < & | ! %in%

(alpha == 0.0) & (beta == 0.0)

Figure 5: Forbidden configurations file (forbidden.txt) for tuning ACOTSP.

If initial configuration are provided (Section 5.5), they must also comply with the constraints
defined in forbiddenFile.

Categorical and ordinal parameters are always treated as strings. Given a parameter like:

a "" c (0, 5, 10, 20)

then, a condition like a >10 will be true when a is 5, because comparisons between strings are
lexicographic and "10" is sorted before "5". As a work-around, you can convert the string to
numeric in the condition with as.numeric(a).

5.7 Repairing configurations

In some problems, the parameter values require complex constraints that cannot be implemented
by constraints defined in forbiddenFile (Section 5.6). The scenario option repairConfiguration

can be set to a user-defined R function that takes a single configuration generated by irace and
returns a “repaired ” configuration, thus allowing the implementation of any rules necessary to
satisfy arbitrary constraints on parameter values. The repairConfiguration function is called
after generating a configuration and before checking for forbidden configurations. The first argu-
ment is a 1-row data.frame with parameter names as the column names, the second argument
is the parameters list (Section 5.1.5), and the third argument is the scenario variable digits.
An example that makes all real-valued parameters sum up to one would be:

repairConfiguration = function (configuration, parameters, digits)

{

isreal <- parameters$type[colnames(configuration)] %in% "r"

configuration[isreal] <- configuration[isreal] / sum(configuration[isreal])

return(configuration)

}

The following example forces three specific parameters to be in increasing order:

repairConfiguration = function (configuration, parameters, digits)

{

columns <- c("p1","p2","p3")

cat("Before"); print(configuration)

configuration[columns] <- sort(configuration[columns])

cat("After"); print(configuration)

return(configuration)

}

22

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

The above code can be specified directly in the scenarioFile, by default scenario.txt.

6 Parallelization

A single run of irace can be done much faster by executing the calls to targetRunner (the runs
of the target algorithm) in parallel. There are four ways to parallelize a single run of irace:

1. Parallel processes: The option parallel allows executing in parallel, within a single
computer, the calls to targetRunner, by means of the parallel R package. For example,
adding --parallel N to the command line of irace will launch in parallel up to N calls of
the target algorithm.

2. MPI: By enabling the option mpi, calls to targetRunner will be executed in parallel by
using the message passing interface (MPI) protocol (requires the Rmpi R package). In this
case, the option parallel controls the number of slave nodes used by irace. For example,
adding --mpi 1 --parallel N to the command-line will create N slaves + 1 master, and
execute up to N calls of targetRunner in parallel.

The user is responsible for setting up the required MPI environment. MPI is commonly
available in computing clusters and requires launching irace in some particular way. An
example script for using MPI mode in a SGE cluster is given at $IRACE_HOME/bin/parallel-
irace-mpi.

By default, irace dynamically balances the load among nodes, however, this may signif-
icantly increase communication overhead in some parallel environments, where disabling
loadBalancing may be faster.

3. Batch jobs clusters: Some computing clusters work by submitting jobs to a batch queue
and waiting for the jobs to finish. With the option batchmode (--batchmode [sge|pbs|

torque|slurm]), irace will launch in parallel as many calls of targetRunner as possible
(parallel can be used to set a limit) and use a cluster-specific method to wait for jobs to
finish. If your cluster type is not supported or not working as expected, please contact us
and we will gladly add support for it.

In this mode, irace must run in the submission node of the cluster, and hence, irace should
not be submitted to the cluster as a job (that is, neither qsub nor squeue should be used to
invoke irace itself). The user must call the appropriate job submission command (e.g.,
qsub) from within targetRunner with the appropriate settings for their cluster, otherwise
targetRunner will not submit jobs to the cluster. The script must return a single string:
The job ID that allows irace to determine the status of the running job. Moreover, the use
of a separate targetEvaluator script is required to evaluate the results of targetRunner
and return them to irace.

See the examples in $IRACE_HOME/examples/batchmode-cluster/.

4. targetRunnerParallel: This option allows users to fully control the parallelization of the
execution of targetRunner. Its value must be an R function that will be invoked by irace

as follows:

targetRunnerParallel(experiments, exec.target.runner, scenario, target.runner)

where scenario is the list describing the configuration scenario (Section 5); experiments is
a list that describes the configurations and instances to be executed (see Section 5.2 for a

23

description); target.runner is the function that calls the target algorithm and it is the same
as targetRunner, if the latter is a function, or it is a call to target.runner.default, if
targetRunner is the path to an executable; and exec.target.runner is an internal function
within irace that takes care of executing target.runner, check its output and, possibly, retry
in case of error (see targetRunnerRetries). The targetRunnerParallel function should
call the given target.runner function for each element in the experiments list, possibly
using exec.target.runner as a wrapper. A trivial example would be:

targetRunnerParallel <- function(experiments, exec.target.runner, scenario)

{

return (lapply(experiments, exec.target.runner, scenario = scenario,

target.runner = target.runner))

}

However, the user is free to set up the calls in any way, perhaps implementing its own
replacement for target.runner and/or exec.target.runner.

The only requirement is that the targetRunnerParallel function must return a list of the
same length as experiments, where each element is the output expected from the corre-
sponding call to targetRunner (see Section 5.2). The following is an example of the output
of a call to targetRunnerParallel with 2 experiments, in which the execution time is not
reported:

print(output)

[[1]]

[[1]]$cost

[1] 29617262

##

[[1]]$time

[1] NA

##

##

[[2]]

[[2]]$cost

[1] 23349535

##

[[2]]$time

[1] NA

7 Testing (Validation) of configurations

Once the tuning process is finished, irace returns a set of configurations corresponding to the
elite configurations at the end of the run, ordered from best to worst. In order to evaluate the
generality of these configurations without looking at their performance on the training set, irace

offers the possibility of evaluating these configurations on a test instance set, typically different
from the training set used during the tuning phase. These evaluations will use the same settings
for parallel execution, targetRunner and targetEvaluator.

24

The test instance set can be specified by the options testInstancesDir and testInstancesFile,
or by setting directly the variable scenario$testInstances, which behave the same as their
counterparts for the training instances (Section 5.4). In particular, each test instance is assigned
a different seed in the same way as done for the training instances. In principle, irace evaluates
each configuration on each testing instance just once, because evaluating one run on n instances
is always better than evaluating n′ runs on n/n′ instances [1]. However, if the number of in-
stances is limited, one can always duplicate instances as needed in the testInstancesFile, and
irace will assign a different random seed to each instance.

The options testNbElites and testIterationElites control which configurations are eval-
uated during the testing phase. In particular, setting testIterationElites = 1 will test not
only the final set of elite configurations (those returned at the end of the training phase), but
also the set of elites at the end of each race (iteration). The option testNbElites limits the
maximum number of configurations considered within each set. Some examples:

• testIterationElites = 0; testNbElites = 1 means that only the best configuration found
during the run of irace, the final best, will be used in the testing phase.

• testIterationElites = 1; testNbElites = 1 will test, in addition to the final best, the
best configuration found at each iteration.

• testIterationElites = 1; testNbElites = 2 will test the two best configurations found
at each iteration, in addition to the final best and second-best configurations.

The testing can be also (re-)executed at a later time by using the following R command:

testing.main(logFile = "./irace.Rdata")

The above line will load the scenario setup from logFile to perform the testing. The testing
results will be stored in the R object iraceResults$testing, which is saved in the file specified
by scenario$logFile. The structure of the object is described in Section 9.2. For examples on
how to analyse the results see Section 9.3.

Another alternative is to test a specific set of configurations using the command-line option
--only-test as follows:

irace --only-test configurations.txt

where configurations.txt has the same format as the set of initial configurations (Section 5.5).

8 Recovering irace runs

Problems like power cuts, hardware malfunction or the need to use computational power for other
tasks may occur during the execution of irace, terminating a run before completion. At the end
of each iteration, irace saves an R data file (logFile, by default "./irace.Rdata") that not
only contains information about the tuning progress (Section 9.2), but also internal information
that allows recovering an incomplete execution.

To recover an incomplete irace run, set the option recoveryFile to the log file previously
produced, and irace will continue the execution from the last saved iteration. The state of the
random generator is saved and loaded, therefore, as long as the execution is continued in the same
machine, the obtained results will be exactly the same as executing irace in one step (external
factors, such as CPU load and disk caches, may affect the target algorithm and that may affect
the results). You can specify the recoveryFile from the command-line or from the scenario file,
and execute irace as described in Section 4. For example, from the command-line use:

25

irace --recovery-file "./irace-backup.Rdata"

When recovering a previous run, irace will try to save data on the file specified by the logFile

option. Thus, you must specify different files for logFile and recoveryFile. Before recovering,
we strongly advise to rename the saved R data file as in the example above, which uses
"irace-backup.Rdata".

Do not change anything in the log file or the scenario file before recovering, as it may have
unexpected effects on the recovered run of irace. In case of doubt, please contact us first
(Section 13). In particular, it is not possible to continue a run of irace by recovering with a
larger budget. Results will not be the same as running irace from the start with the largest
budget. An alternative is to use the final configurations from one run as the initial
configurations of a new run.

If your scenario uses targetEvaluator (Section 5.3) and targetEvaluator requires files created
by targetRunner, then recovery will fail if those files are not present in the execDir directory.
This can happen, for example, if you recover from a different directory than the one from which
irace was initially executed, or when execDir is set to a temporary directory for every irace run.
Thus, you need to copy the contents of the previous execDir into the new one.

9 Output and results

During its execution, irace prints information about the progress of the tuning in the standard
output. Additionally, after each iteration, an R data file is saved (logFile option) containing
the state of irace.

9.1 Text output

Figure 6 shows the output, up to the end of the first iteration, of a run of elitist irace applied to
the ACOTSP scenario with 1000 evaluations as budget.

First, irace gives the user a warning informing that it has found a file with the default scenario
filename and it will use it. Then, general information about the selected irace options is printed:

• nbIterations indicates the minimum number of iterations irace has calculated for the sce-
nario. Depending on the development of the tuning the final iterations that are executed can
be more.

• minNbSurvival indicates the minimum number of alive configurations that are required to
continue a race. When less configurations are alive the race is stopped and a new iteration
begins.

• nbParameters is the number of parameters of the scenario.

• seed is the number that was used to initialize the random number generator in irace.

• confidence level is the confidence level of the statistical test.

• budget is the total number of evaluations available for the tuning.

• time budget is the maximum execution time available for the tuning.

26

• mu is a value used for calculating the minimum number of iterations.

• deterministic indicates if the target algorithm is assumed to be deterministic.

At each iteration, information about the progress of the execution is printed as follows:

• experimentsUsedSoFar is the number of experiments from the total budget that have been
used up to the current iteration.

• timeUsed is the execution time used so far in the experiments. Only available when reported
in the targetRunner (activate it with the maxTime option).

• remainingBudget is the number of experiments that have not been used yet.

• timeEstimate estimation of the mean execution time. This is used to calculate the remaining
budget when maxTime is used.

• currentBudget is the number of evaluations irace has allocated to the current iteration.

• nbConfigurations is the number of configurations irace will use in the current iteration. In
the first iteration, this number of configurations include the initial configurations provided;
in later iterations, it includes the elite configurations from the previous iterations.

After the iteration information, a table shows the progress of the iteration execution. Each
row of the table gives information about the execution of an instance in the race. The first
column contains a symbol that describes the results of the statistical test:

|x| No statistical test was performed for this instance. The options firstTest and eachTest

control on which instances the statistical test is performed.

|-| Statistical test performed and configurations have been discarded. The column Alive gives
an indication of how many configurations have been discarded.

|=| Statistical test performed and no configurations have been discarded. This means irace

needs to evaluate more instances to identify the best configurations.

|!| This indicator exists only for the elitist version of irace. It indicates that the statistical test
was performed and some elite configurations appear to show bad performance and could be
discarded but they are kept because of the elitist rules. See option elitist in Section 11
for more information.

Other columns have the following meaning:

Instance: Index of (instance,seed) pair executed. This number corresponds to the index
of the list found in state$.irace$instancesList. See Section 9.2 for more information.
This is different from the instance ID passed to targetRunner.

Bound: Only when capping is enabled. Execution time used as bound for the execution of new
candidate configurations.

Alive: Number of configurations that have not been discarded after the statistical test was
performed.

Best: ID of the best configuration according to the instances seen so far in this race (i.e., not
including previous iterations).

27

* irace: An implementation in R of Iterated Race
* Version: 3.0.2085
* Copyright (C) 2010-2018
* Manuel Lopez-Ibanez <manuel.lopez-ibanez@manchester.ac.uk>
* Jeremie Dubois-Lacoste
* Leslie Perez Caceres <leslie.perez.caceres@ulb.ac.be>
*
* This is free software, and you are welcome to redistribute it under certain
* conditions. See the GNU General Public License for details. There is NO
* WARRANTY; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* irace builds upon previous code from the race package:
*
* race: Racing methods for the selection of the best
* Copyright (C) 2003 Mauro Birattari

installed at: /home/manu/R/x86_64-pc-linux-gnu-library/3.2/irace
called with: --parallel 2
Warning: A default scenario file './scenario.txt' has been found and will be read
Adding 1 initial configuration(s) from file '/home/manu/work/irace/trunk/examples/vignette-example/default.txt'
2018-06-24 13:05:11 BST: Initialization
Elitist race
Elitist new instances: 1
Elitist limit: 2
nbIterations: 5
minNbSurvival: 5
nbParameters: 11
seed: 405616364
confidence level: 0.95
budget: 1000
mu: 5
deterministic: FALSE

2018-06-24 13:05:11 BST: Iteration 1 of 5
experimentsUsedSoFar: 0
remainingBudget: 1000
currentBudget: 200
nbConfigurations: 33

Markers:
x No test is performed.
- The test is performed and some configurations are discarded.
= The test is performed but no configuration is discarded.
! The test is performed and configurations could be discarded but elite configurations are preserved.
. All alive configurations are elite and nothing is discarded

+-+-----------+-----------+-----------+---------------+-----------+--------+-----+----+------+
| | Instance| Alive| Best| Mean best| Exp so far| W time| rho|KenW| Qvar|
+-+-----------+-----------+-----------+---------------+-----------+--------+-----+----+------+
x	1	33	10	23097412.00	33	00:02:52	NA	NA	NA
x	2	33	10	23018340.50	66	00:02:52	+0.89	0.95	0.0030
x	3	33	10	23099732.33	99	00:02:53	+0.89	0.93	0.0084
x	4	33	10	23144658.75	132	00:02:52	+0.91	0.93	0.0069
!	5	3	10	23171076.80	165	00:02:53	+0.70	0.76	0.2154
+-+-----------+-----------+-----------+---------------+-----------+--------+-----+----+------+
Best-so-far configuration: 10 mean value: 23171076.80
Description of the best-so-far configuration:

.ID. algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank elitistants .PARENT.
10 10 mmas 3 1.0669 7.4378 0.7358 9 9 NA 1 NA NA NA

2018-06-24 13:19:36 BST: Elite configurations (first number is the configuration ID; listed from best to worst according to the sum of ranks):
algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank elitistants

10 mmas 3 1.0669 7.4378 0.7358 9 9 NA 1 NA NA
23 mmas 3 2.5027 6.5412 0.5903 58 18 NA 0 NA NA
28 acs 3 4.8560 9.3200 0.5753 7 29 0.731 1 NA NA
2018-06-24 13:19:36 BST: Iteration 2 of 5
experimentsUsedSoFar: 165
remainingBudget: 835

Figure 6: Sample text output of irace.

28

Mean best: Mean of the best configuration across the instances seen so far in this race.

Exp so far: Number of experiments performed so far.

W time: Wall-clock time spent on this instance.

rho, KenW, and Qvar: Spearman’s rank correlation coefficient rho, Kendall’s concordance coeffi-
cient W, and a variance measure described in [11], respectively, of the configurations across
the instances evaluated so far in this iteration. These measures evaluate how consistent is
the performance of the configurations across the instances. Values close to 1 for rho and
KenW and values close to 0 for Qvar indicate that the scenario is highly homogeneous. For
heterogeneous scenarios, we provide advice in Section 10.5.

Finally, irace outputs the best configuration found and a list of the elite configurations. The
elite configurations are configurations that did not show statistically significant difference during
the race; they are ordered according to their mean performance on the executed instances.

9.2 R data file (logFile)

The R data file created by irace (by default as irace.Rdata, see option logFile) contains an
object called iraceResults. You can load this file in the R console with:

load("irace-acotsp.Rdata")

The iraceResults object is a list, and the elements of a list can be accessed in R by using
the $ or [[]] operators:

> iraceResults$irace.version

[1] "3.0.2085"

> iraceResults[["irace.version"]]

[1] "3.0.2085"

The iraceResults list contains the following elements:

• scenario: The scenario R object containing the irace options used for the execution. See
Section 11 and the help of the irace package; open an R console and type: ?defaultScenario.
See Section 11 for more information.

• parameters: The parameters R object containing the description of the target algorithm
parameters. See Section 5.1.

• allConfigurations: The target algorithm configurations generated by irace. This object is
a data frame, each row is a candidate configuration; the first column (.ID.) indicates the
internal identifier of the configuration; the final column (.PARENT.) is the identifier of the
configuration from which the current configuration was sampled; and the remaining columns
correspond to the parameter values; each column is named as the parameter name specified
in the parameter object.

29

> head(iraceResults$allConfigurations)

.ID. algorithm localsearch alpha beta rho ants nnls q0

1 1 as 0 1.0000 1.0000 0.9500 10 NA NA

2 2 mmas 2 3.8121 8.1414 0.5582 12 32 NA

3 3 acs 1 1.2588 0.8626 0.2912 14 26 0.8537

4 4 as 2 3.5940 8.1977 0.3866 5 9 NA

5 5 as 3 3.3344 1.7350 0.9193 6 11 NA

6 6 ras 0 0.6872 3.4356 0.5362 15 NA NA

dlb rasrank elitistants .PARENT.

1 <NA> NA NA NA

2 1 NA NA NA

3 1 NA NA NA

4 1 NA NA NA

5 1 NA NA NA

6 <NA> 62 NA NA

• allElites: A list that contains one element per iteration. Each element contains the inter-
nal identifier of the elite candidate configurations of the corresponding iteration (identifiers
correspond to allConfigurations$.ID.).

> print(iraceResults$allElites)

[[1]]

[1] 10 23 28

[[2]]

[1] 10 23 28 49

[[3]]

[1] 88 10 49

[[4]]

[1] 88 116 103 90 100

[[5]]

[1] 135 103 122 116 154

[[6]]

[1] 165 116 135 122 103

[[7]]

[1] 165 116 122 168 103

The configurations are ordered by mean performance, that is, the ID of the best configuration
corresponds to the first ID. To obtain the values of the parameters of all elite configurations
found by irace use:

30

> getFinalElites(logFile = "irace-acotsp.Rdata", n = 0)

.ID. algorithm localsearch alpha beta rho ants nnls q0

103 103 acs 3 0.6322 3.2857 0.7198 13 17 0.8845

116 116 mmas 3 0.9069 5.5773 0.9384 13 16 NA

122 122 acs 3 1.6182 5.9100 0.6213 13 22 0.3340

165 165 acs 3 1.5917 7.8589 0.8315 9 17 0.6045

168 168 mmas 3 0.8970 5.4275 0.8249 12 13 NA

dlb rasrank elitistants .PARENT.

103 1 NA NA 88

116 1 NA NA 88

122 1 NA NA 88

165 1 NA NA 135

168 1 NA NA 116

• iterationElites: A vector containing the best candidate configuration ID of each iteration.
The best configuration found corresponds to the last one of this vector.

> print(iraceResults$iterationElites)

[1] 10 10 88 88 135 165 165

One can obtain the full configuration with:

> last <- length(iraceResults$iterationElites)

> id <- iraceResults$iterationElites[last]

> getConfigurationById(logFile = "irace-acotsp.Rdata", ids = id)

.ID. algorithm localsearch alpha beta rho ants nnls q0

165 165 acs 3 1.5917 7.8589 0.8315 9 17 0.6045

dlb rasrank elitistants .PARENT.

165 1 NA NA 135

• rejectedConfigurations: A vector containing the rejected configurations IDs. These cor-
respond to configurations that produced failed executions and were ignored by irace during
the configuration process. See Section 10.8 to enable the detection of such configurations.

• experiments: A matrix with configurations as columns and instances as rows. Column names
correspond to the internal identifier of the configuration (allConfigurations$.ID.). The
results of a particular configuration can be obtained using:

> # As an example, we use the best configuration found

> best.config <- getFinalElites(iraceResults = iraceResults, n = 1)

> id <- best.config$.ID.

> # Obtain the configurations using the identifier

> # of the best configuration

> all.exp <- iraceResults$experiments[,as.character(id)]

> all.exp[!is.na(all.exp)]

31

1 2 3 4 5 6 7

23102909 22966777 23248112 23272630 23245218 23341802 23152680

8 9 10 11 12 13 14

22884889 23131551 23405534 23251711 23072775 23102686 22887792

When a configuration was not executed on an instance, its value is NA. A configuration may
not be executed on an instance because: 1) it was not created yet when the instance was
used, or 2) it was discarded by the statistical test and not executed on subsequent instances,
or 3) the race terminated before this instance was considered.

Row names correspond to the identifier of the (instance,seed) pairs defined in
state$.irace$instancesList. The instance and seed used for a particular experiment
can be obtained with:

> # As an example, we get seed and instance of the experiments

> # of the best candidate.

> # Get index of the instances

> pair.id <- names(all.exp[!is.na(all.exp)])

> index <- iraceResults$state$.irace$instancesList[pair.id,"instance"]

> # Obtain the instance names

> iraceResults$scenario$instances[index]

[1] "./instances/1000-3.tsp" "./instances/1000-6.tsp"

[3] "./instances/1000-4.tsp" "./instances/1000-5.tsp"

[5] "./instances/1000-9.tsp" "./instances/1000-10.tsp"

[7] "./instances/1000-2.tsp" "./instances/1000-8.tsp"

[9] "./instances/1000-7.tsp" "./instances/1000-1.tsp"

[11] "./instances/1000-5.tsp" "./instances/1000-7.tsp"

[13] "./instances/1000-3.tsp" "./instances/1000-8.tsp"

> # Get the seeds

> iraceResults$state$.irace$instancesList[index,"seed"]

[1] 785731961 1797129992 1436324327 368620884 1781572120 91603576

[7] 318803910 54955629 1229552516 513870324 368620884 1229552516

[13] 785731961 54955629

• experimentLog: A matrix with columns iteration,instance,configuration. This matrix
contains the log of all the experiments that irace performs during its execution. The instance
column refers to the index of the state$.irace$instancesList data frame. When capping

is enabled a column bound is added to log the execution bound applied for each execution.

• softRestart: A logical vector that indicates if a soft restart was performed on each iteration.
If FALSE, then no soft restart was performed. See option softRestart in Section 11.

• state: A list that contains the state of irace, the recovery (Section 8) is done using the
information contained in this object. The probabilistic model of the last elite configurations
can be found here by doing:

32

> # As an example, we get the model probabilities for the

> # localsearch parameter.

> iraceResults$state$model["localsearch"]

$localsearch

$localsearch$`165`

[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`116`

[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`135`

[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`122`

[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`103`

[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

> # The order of the probabilities corresponds to:

> iraceResults$parameters$domain$localsearch

[1] "0" "1" "2" "3"

The example shows a list that has one element per elite configuration (ID as element name).
In this case, localsearch is a categorical parameter and it has a probability for each of its
values.

• testing: A list that contains the testing results. The list contains the following elements:

– experiments: Matrix of experiments in the same format as the
iraceResults$experiments matrix. The column names indicate the candidate
configuration identifier and the row names contain the name of the instances.

> # Get the results of the testing

> iraceResults$testing$experiments

10 88 135 165 116 122 168

1t 23350084 23334017 23331190 23327228 23371196 23427779 23387237

2t 23158025 23130982 23142358 23179419 23179307 23155296 23109550

3t 22994559 23063840 23043808 22990373 23046991 22977037 23014320

4t 23016923 23043532 23017283 23104293 23071698 23041871 23019007

5t 23227229 23213293 23199857 23162218 23181387 23239969 23182344

6t 23438661 23434073 23437438 23425628 23400635 23406048 23424780

7t 23361260 23325820 23389219 23326163 23338470 23358237 23341254

8t 23219358 23237006 23238508 23228497 23255761 23315367 23247099

9t 23234041 23284418 23346754 23329543 23300353 23281418 23264742

10t 23057525 23068532 23059184 23051119 23021152 23061316 23053501

33

103

1t 23376854

2t 23166963

3t 23089172

4t 23046370

5t 23202409

6t 23411314

7t 23344596

8t 23296350

9t 23281442

10t 23047358

– seeds: The seeds used for the experiments, each seed corresponds to each instance in the
rows of the test experiments matrix.

> # Get the seeds used for testing

> iraceResults$testing$seeds

1t 2t 3t 4t 5t 6t

1665355283 1920783977 163874667 1858536791 347923286 1063609096

7t 8t 9t 10t

464926116 446039999 1834807335 863182511

In the example, instance 1000-1.tsp is executed with seed 1665355283.

9.3 Analysis of results

The final configurations returned by irace are the elites of the final race. They are reported in
decreasing order of performance, that is, the best configuration is reported first.

If testing is performed, you can further analyze the resulting best configurations by performing
statistical tests in R or just plotting the results:

> results <- iraceResults$testing$experiments

> # Wilcoxon paired test

> conf <- gl(ncol(results), # number of configurations

+ nrow(results), # number of instances

+ labels = colnames(results))

> pairwise.wilcox.test (as.vector(results), conf, paired = TRUE, p.adj = "bonf")

Pairwise comparisons using Wilcoxon signed rank test

data: as.vector(results) and conf

10 88 135 165 116 122 168

88 1 - - - - - -

135 1 1 - - - - -

165 1 1 1 - - - -

116 1 1 1 1 - - -

122 1 1 1 1 1 - -

168 1 1 1 1 1 1 -

34

23000000

23100000

23200000

23300000

23400000

10 88 135 165 116 122 168 103

Configuration ID

S
o
lu

ti
o
n
 c

o
s
t

Figure 7: Boxplot of the testing results of the best configurations.

103 1 1 1 1 1 1 1

P value adjustment method: bonferroni

> # Plot the results

> configurationsBoxplot (results, ylab = "Solution cost")

During the tuning, irace iteratively updates the sampling models of the parameters to focus
on the best regions of the parameter search space. The frequency of the sampled configurations
can provide insights on the parameter search space. We provide a function for plotting the
frequency of the sampling of a set of configurations. For more information on this function,
please see the R help, type in the R console: ?parameterFrequency. The following example
plots the frequency of the parameters sampled during one irace run:

> parameterFrequency(iraceResults$allConfigurations, iraceResults$parameters)

Plotting: algorithm

Plotting: localsearch

Plotting: alpha

Plotting: beta

Plotting: rho

Plotting: ants

Plotting: nnls

Plotting: q0

Plotting: dlb

Plotting: rasrank

Plotting: elitistants

By using parallel coordinates plots, it is possible to analyze how the parameters interact with
each other. For more information on this function, please see the R help, type in the R console:
(?parallelCoordinatesPlot). The following example shows how to create a parallel coordinate

35

as eas ras acs

algorithm

values

F
re

q
u
e
n
c
y

0
3
0

6
0

0 1 2 3

localsearch

values

F
re

q
u
e
n
c
y

0
4
0

1
0
0

alpha

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 1 2 3 4 5

0
.0

0
0
.2

5

beta

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 2 4 6 8 10

0
.0

0
0
.1

5

rho

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.0

ants

values
P

ro
b
a
b
ili

ty
 d

e
n
s
it
y

20 40 60 80 100

0
.0

0
0
.0

3

nnls

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

10 20 30 40 50

0
.0

0
0
.0

4

q0

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.0

0 1 <NA>

dlb

values

F
re

q
u
e
n
c
y

0
6
0

1
2
0

rasrank

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 20 40 60 80 100

0
.0

0
0

0
.0

1
5

elitistants

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 200 400 600

0
.0

0
0
0

Figure 8: Parameters sampling frequency.

36

Parameters parallel coordinates

a
lg

o
ri

th
m

a
lp

h
a

b
e

ta

rh
o

q
0

as

mmas

eas

ras

acs

NA

0

1

2

3

4

5

<NA>

0

2

4

6

8

10

<NA>

0

0.2

0.4

0.6

0.8

1

<NA>

0

0.2

0.4

0.6

0.8

1

<NA>

Figure 9: Parallel coordinate plots of the parameters of the configurations in the last two itera-
tions of a run of irace.

plot of the configurations in the last two iterations of irace.

Get last iteration number

last <- length(iraceResults$iterationElites)

Get configurations in the last two iterations

conf <- getConfigurationByIteration(iraceResults = iraceResults,

iterations = c(last - 1, last))

parallelCoordinatesPlot (conf, iraceResults$parameters,

param_names = c("algorithm", "alpha", "beta", "rho", "q0"),

hierarchy = FALSE)

It is also possible to plot the performance evolution of the best-so-far configuration over the
number of experiments as follows:

Get number of iterations

iters <- unique(iraceResults$experimentLog[, "iteration"])

Get number of experiments (runs of target-runner) up to each iteration

fes <- cumsum(sapply(iters, function(k)

sum(iraceResults$experimentLog[, "iteration"] == k)))

Get the mean value of all experiments executed up to each iteration

37

200 400 600 800 1000

2
3

1
4

0
0

0
0

2
3

1
8

0
0

0
0

2
3

2
2

0
0

0
0

Number of runs of the target algorithm

E
s
ti
m

a
te

d
 m

e
a

n
 v

a
lu

e
 o

ve
r

w
h

o
le

 t
ra

in
in

g
 s

e
t

●

●

●

●

●

●

●

Figure 10: Training set performance of the best-so-far configuration over number of experiments.

for the best configuration of that iteration.

values <- sapply(iters, function(k) {

instances <- as.character(

unique(iraceResults$experimentLog[

iraceResults$experimentLog[, "iteration"] == k,

"instance"]))

return(mean(iraceResults$experiments[

instances,

as.character(iraceResults$iterationElites[k])]))})

plot(fes, values, type="s", xlab = "Number of runs of the target algorithm",

ylab = "Estimated mean value over whole training set")

points(fes, values)

We can do the same, but using the performance on the test set:

Get number of iterations

iters <- unique(iraceResults$experimentLog[, "iteration"])

Get number of experiments (runs of target-runner) up to each iteration

fes <- cumsum(sapply(iters, function(k)

38

200 400 600 800 1000

2
3

2
1

0
0

0
0

2
3

2
1

5
0

0
0

2
3

2
2

0
0

0
0

Number of runs of the target algorithm

M
e

a
n

 v
a

lu
e

 o
ve

r
te

s
ti
n

g
 s

e
t

● ●

● ●

●

● ●

Figure 11: Testing set performance of the best-so-far configuration over number of experiments.

sum(iraceResults$experimentLog[, "iteration"] == k)))

Get the mean value of all experiments executed up to each iteration

for the best configuration of that iteration.

values <- sapply(iters, function(k)

mean(iraceResults$testing$experiments[

, as.character(iraceResults$iterationElites[k])]))

plot(fes, values, type = "s",

xlab = "Number of runs of the target algorithm",

ylab = "Mean value over testing set")

points(fes, values)

The irace package also provides an implementation of the ablation method [4]. See Sec-
tion 10.9.

39

10 Advanced topics

10.1 Tuning budget

Before setting the budget for a run of irace, please consider the number of parameters that need
to be tuned, available processing power and available time. The optimal budget depends on the
difficulty of the tuning scenario, the size of the parameter space and the heterogeneity of the
instances. Typical values range from 1 000 to 100 000 runs of the target algorithm, although
smaller and larger values are also possible. Currently, irace does not detect whether the given
budget allows generating all possible configurations. In such a case, the use of iterated racing is
unnecessary: One can simply perform a single race of all configurations (see FAQ in Section 12.8).

Irace provides two options for setting the total tuning budget (maxExperiments and maxTime).
The option maxExperiments limits the number of executions of targetRunner performed by
irace. The option maxTime limits the total time of the targetRunner executions. When this
latter option is used, targetRunner must return the evaluation cost together with the execution
time ("cost time").

When the goal is to minimize the computation time of an algorithm, and you wish to use
maxTime as the tuning budget, targetRunner must return the time also as the evaluation cost,
that is, return the time two times as "time time".

When using targetEvaluator and using maxTime as tuning budget, targetRunner just returns
the time ("time") and targetEvaluator returns the cost.

When using maxTime, irace estimates the execution time of each targetRunner execution
before the configuration. The amount of budget used for the estimation is set with the option
budgetEstimation (default is 2%). The obtained estimation is adjusted after each iteration
using the obtained results and it is used to estimate the number of experiments that can be
executed. Internally, irace uses the number of remaining experiments to adjust the number of
configurations tested in each race.

10.2 Multi-objective tuning

Currently, irace only optimizes one cost value at a time, which can be solution cost, computa-
tion time or any other objective that is returned to irace by the targetRunner. If the target
algorithm is multi-objective, it will typically return not a single cost value, but a set of objective
vectors (typically, a Pareto front). For tuning such a target algorithm with irace, there are two
alternatives. If the algorithm returns a single vector of objective values, they can be aggregated
into one single number by using, for example, a weighted sum. Otherwise, if the target algorithm
returns a set of objective vectors, a unary quality metric (e.g., the hypervolume) may be used to
evaluate the quality of the set.3

The use of aggregation or quality metrics often requires normalizing the different objectives.
If normalization bounds are known a priori for each instance, normalized values can be computed
by targetRunner. Otherwise, the bounds may be dynamically computed while running irace, by
using targetEvaluator. In this case, targetRunner will save the output of the algorithm, then
the first call to targetEvaluator will examine the output produced by all calls to targetRunner

for the same instance, update the normalization bounds and return the normalized output.
Subsequent calls to targetEvaluator for the same instance will simply return the normalized

3An implementation is publicly available at http://lopez-ibanez.eu/hypervolume [5]

40

http://lopez-ibanez.eu/hypervolume

output. A similar approach can be used to dynamically compute the reference points or sets
often required by unary quality metrics.

For more information about defining a targetEvaluator, see Section 5.3. Examples of
tuning a multi-objective target algorithm using the hypervolume can be found in the examples
at $IRACE_HOME/examples/hypervolume and $IRACE_HOME/examples/moaco.

10.3 Tuning for minimizing computation time

When using irace for tuning algorithms that report computation time to reach a target, targetRunner
should return the execution time of a configuration instead of solution cost.

Starting from version 3.0, irace includes an elitist racing procedure that implements an adap-
tive capping mechanism [10]. Adaptive capping [6] is a configuration technique that avoids
the execution of long runs of the target algorithm, focusing the configuration budget in the eval-
uation of the best configurations found. This is done by bounding the execution time of each
configuration based on the best performing candidate configurations.

To use adaptive capping, the capping option must be enabled and the elitist irace option
must be selected. When evaluating candidate configurations on an instance, irace calculates an
execution bound based on the execution times of the elite configurations. The boundType option
defines how the performance of the elite configurations is defined to obtain the execution bound.
The default value of boundType calculates the performance (psi) of each elite configuration (s) as
the mean execution time of the instances already executed in the race and the currently executed
instance (i). The cappingType option specifies the measure used to obtain the elite configurations
bound. By default, the execution bound is calculated as the median of the execution times of
the elite configurations:

bi = Medianθs∈Θelite{psi} (1)

The execution bound for new configurations (j) is calculated by multiplying the elite config-
urations bound by the number of instances (i) in the execution list and subtracting the mean
execution time of the instances executed by the candidate:

k
′j
i = bi · i+ bmin − pji−1

· (i− 1) (2)

A small constant bmin is added to account for time measurements errors. These settings are
also used to apply a dominance elimination criterion together with the statistical test elimination.
The domination criterion is defined as:

bi + bmin < pji (3)

When elite configurations dominate new configurations, these are eliminated from the race.

The default statistical test when capping is enabled is t-test. This test is more appropriate to
configure algorithms for optimizing runtime (see Section 10.6).

The execution bound is constantly adjusted by irace based on the best configurations times,
nevertheless, a maximum execution time (bmax) is never exceeded. This maximum execution
time must be defined in the configuration scenario when capping is enabled. To specify the
maximum execution bound for the target runner executions use the boundMax option. The final
execution bound (kji) is calculated by:

kji =

bmax if k
′j
i > bmax,

min{bi, b
max} if k

′j
i ≤ 0,

k
′j
i otherwise;

(4)

41

Additionally, the boundDigits option defines the precision of the time bound provided by
irace, the default setting is 0.

Timed out executions occur when the maximum execution bound (boundMax) is reached and
the algorithm has not achieved successful termination or a defined quality goal. In this cases,
is common practice to apply a penalty known as PARX, in which timeouts are penalized by
multiplying boundMax by a constant X. Using the boundPar option is possible to define the
constant X to penalize timed out executions. Bounded executions are executions that do not
achieve successful termination or a defined quality goal in the execution time provided by irace,
which is smaller than boundMax. The boundAsTimeout option replaces the evaluation of bounded
executions by the boundMax value. More details about the implementation of adaptive capping
can be found in Pérez Cáceres et al. [10].

Note that bounded executions are not timed out executions and thus, they will not be penalized
by PARX.

Penalized evaluations of timed out and bounded executions are only used for the elimination
tests and the comparison between the quality of configurations. Irace only uses raw execution
times to calculate executions bounds. These must be provided by the target runner or target
evaluator as described in Section 5.2 and Section 5.3 .

10.4 Hyper-pararameter optimization of machine learning methods

The irace package can also be used for model selection and hyper-parameter optimization of
machine learning methods. For such a task, we recommend the mlr package [3]. The follow-
ing webpage documents how to use irace for this purpose: https://mlr-org.github.io/mlr-

tutorial/devel/html/advanced_tune/index.html

10.5 Heterogeneous scenarios

We classify a scenario as homogeneous when the target algorithm has a consistent performance
regarding the instances; roughly speaking, good configurations tend to perform well and bad
configurations tend to perform poorly on all instances of the problem. By contrast, in hetero-
geneous scenarios, the target algorithm has an inconsistent performance on different instances,
that is, some configurations perform well for a subset of the instances, while they perform poorly
for a different subset.

When facing a heterogeneous scenario, the first question should be whether the objective of
tuning is to find configurations that perform reasonably well over all instances, even if they are
not the best ones in any of them. If this is not the case, then it would be better to partition
instances into more similar subsets and execute irace separately on each subset. This will lead to
a portfolio of algorithm configurations, one for each subset, and algorithm selection techniques
can be used to select the best configuration from the portfolio when facing a new instance.

If finding an overall good configuration for all the instances is the objective, then we recom-
mend that instances are randomly sampled (option sampleInstances), unless one can provide
the instances in a particular order that does not bias the tuning towards any subset. For example,
let’s assume a heterogeneous scenario with two classes of instances. If training instances are not
sampled and the first ten instances belong to only one class, the tuning will be biased towards
configurations that perform good for those instances. An optimal order would not ever present
consecutively two instances of the same type.

42

https://mlr-org.github.io/mlr-tutorial/devel/html/advanced_tune/index.html
https://mlr-org.github.io/mlr-tutorial/devel/html/advanced_tune/index.html

In addition, it may be useful to increase the number of instances executed before doing a
statistical test in order to see more instance classes before discarding configurations. The option
elitistNewInstances in elitist irace (option elitist) can be used to increase the number of
new instances executed in each iteration, e.g., --elitist-new-instances 5 (default value is
1). For the non-elitist irace, the option firstTest may be used for the same purpose, e.g.,
--first-test 10 (default value is 5).

While executing irace, the homogeneity of the scenario can be observed by examining the
values of Spearman’s rank correlation coefficient and Kendall’s concordance coefficient in the
text output of irace. See Section 9.1 for more information.

10.6 Choosing the statistical test

The statistical test used in irace identifies statistically bad performing configurations that can be
discarded from the race in order to save budget. Different statistical tests use different criteria
to compare the cost of the configurations, which has an effect on the tuning results.

Irace provides two types of statistical tests (option testType). Each test has different char-
acteristics that are beneficial for different goals:

• Friedman test (F-test): This test uses the ranking of the configurations to analyze the
differences between their performance. This makes the test suitable for scenarios where the
numerical results and their scale are not significant to assess the cost of the configurations. For
example, if the results for different instances have high numerical differences and evaluating
the performance of the configurations using the mean could be deceiving. We recommend
to use the F-test (default when capping is not enabled) when tuning for solution cost and
whenever the best performing algorithm should be among the best in as many instances as
possible.

• Student’s t-test (t-test): This test uses the mean performance of the configurations to
analyze the differences between the configurations. This makes the test suitable for scenarios
where the differences between values obtained for different instances are relevant to assess
good configurations. We recommend using t-test, in particular, when the target algorithm is
minimizing computation time and, in general, whenever the best configurations should obtain
the best average solution cost.

The confidence level of the tests may be adjusted by using the option confidence. Increasing
the value of confidence leads to a more strict statistical test. Keep in mind that a stricter test
will require more budget to identify which configurations perform worse. A less strict test discards
configurations faster by requiring less evidence against them and, therefore, it is more likely to
discard good configurations.

10.7 Complex parameter space constraints

Some parameters may have complex dependencies. Ideally, parameters should be defined in the
way that is more likely to help the search performed by irace. For example, when tuning a branch
and bound algorithm, one may have the following parameters:

• branching (b) that takes values in {0,1,2,3}, where 0 indicates no branching will be used
and the rest are different types of branching.

• stabilization (s) that takes values in {0,1,2,3,4,5,6,7,8,9,10}, of which for b=0 only
{0,1,2,3,4,5} are relevant.

43

In this case, it is not possible to describe the parameter space by defining only two parameters
for irace. An extra parameter must be introduced as follows:

name label type range condition

b "-b " c (0,1,2,3)

s1 "-s " c (0,1,2,3,4,5) | b == "0"

s2 "-s " c (0,1,2,3,4,5,6,7,8,9,10) | b != "0"

Parameters whose values depend on the value of other parameters may also require using extra
parameters or changing the parameters and processing them in targetRunner. For example,
given the following parameters:

• Population size (p) takes the integer values [1, 100].

• Selection size (s) takes the same values but no more than the population size, that is [1,p].

In this case, it is possible to describe the parameters p and s using surrogate parameters for
irace that represent a ratio of the original interval as follows:

name label type range

p1 "-p " r (0.0,1.0)

s1 "-s " r (0.0,1.0)

and the values must be further processed in targetRunner. For example, if the surrogate pa-
rameter p1 has value 0.5, mapping it to the original interval of [1, 100], we obtain a value of
p = 51. More than one value of the surrogate parameter (e.g., 0.501 and 0.502) result in the
same final value. Parameter s has an interval that depends on the final value of parameter p,
if the surrogate parameter s1 has value 0.3, it must be mapped to the interval [1, 51], giving a
value of s = 16.

The processing within targetRunner can also split and join parameters. For example, assume
the following parameters:

name label type range

m "-m " i (1,250)

e "-e " r (0.0,2.0)

These parameters could be used to define a value m · 10e for another parameter (--strength)
not known by irace. Then, targetRunner takes care of parsing -m and -e, computing the strength
value and passing the parameter --strength together with its value to the target algorithm.

More complex parameter space constraints may be implemented by means of the repairConfiguration
function (Section 5.7)

10.8 Unreliable target algorithms and immediate rejection

There are some situations in which the target algorithm may fail to execute correctly. By default,
irace stops as soon as a call to targetRunner or targetEvaluator fails, which helps to detect
bugs in the target algorithm. Sometimes the failure cannot be fixed because it is due to system
problems, network issues, memory limits, bugs for which no fix is available, or fixing them is
impossible because there is no access to the source code.

In those cases, if the failure is caused by random errors or transient system problems, one
may wish to ignore the error and try again the same call in the hope that it succeeds. The option
targetRunnerRetries indicates the number of times a targetRunner execution is repeated if it
fails. Use this option only if you know additional repetitions could be successful.

44

If the target algorithm consistently fails for a particular set of configurations, these configu-
rations may be declared as forbidden (forbiddenFile) so that irace avoids them. On the other
hand, if the configurations that cause the problem are unknown, the targetRunner should return
Inf so that irace immediately rejects the failing configuration. This immediate rejection should
be used with care according to the goals of the tuning. For example, a configuration that crashes
on a particular instance, e.g., by running out of memory, might still be considered acceptable if
it gives very good results on other instances. The configurations which were rejected during the
execution of irace are saved in the Rdata output file (see Section 9.2).

If you are using adaptive capping (capping is enabled) and the configuration budget is specified
in total execution time (maxTime option), immediate rejected executions must provide the cost
(which must be Inf) and the execution time which will be used to calculate the used
configuration budget. Nevertheless, rejected configurations will be excluded from the execution
time estimation and the execution bound calculation.

10.9 Ablation Analysis

The ablation method [4] takes two configurations (source and target) and generates a sequence
of configurations that differ between each other just in one parameter, where parameter values in
source are replaced by values from target. The sequence can be seen as a “path” from the source
to the target configuration. This can be used to find new better “intermediate” configurations
or to analyse the impact of the parameters in the performance. To perform ablation use the
ablation function and specify the IDs of the source and target configurations. By default, the
source is taken as the first configuration evaluated by irace and the target as the best overall
configuration found. The argument ab.params can be used to specify a subset of the parameters
considered in the ablation. The option firstTest defines how many instances are selected for
the evaluation of configurations, if a different number of instances is required it must be specified
in the argument n.instance. If a PDF filename is provided (pdf.file), a plot will be produced
from the ablation results (Fig. 12).

ablation(iraceLogFile = "irace.Rdata",

src = 1, target = 60, pdf.file = "plot-ablation.pdf")

The function returns a list containing the following elements:

configurations: A dataframe of configurations tested during ablation.

instances: The instances used for the ablation.

scenario: Scenario options provided by the user.

trajectory: Best configuration IDs at each step of the ablation.

best: Best overall configuration found.

10.10 Postselection race

After the configuration process is finished it is possible perform a postselection race by specifying
the irace option postselection with value larger than 0. This option will perform a post-
selection race of the set of best configurations of each iteration. The budget assigned for this race
is obtained using the postselection option which defines a percentage of the irace configuration

45

●

●

● ● ● ●

●

2
.3

e
+

0
7

2
.5

e
+

0
7

2
.7

e
+

0
7

2
.9

e
+

0
7

M
e

a
n

 c
o

n
fi
g

u
ra

ti
o

n
 c

o
s
t

s
o

u
rc

e

lo
c
a

ls
e

a
rc

h
=

3

n
n

ls
=

7

d
lb

=
1

a
lg

o
ri

th
m

=
m

m
a

s

rh
o

=
0

.9
2

3

b
e

ta
=

2
.3

3
9

a
n

ts
=

6

a
lp

h
a

=
4

.0
5

7
7

Figure 12: Example of plot generated by ablation().

budget. This budget is not considered in the total configuration budget that is, these evaluations
are extra computation.

The execution of the postselection race add an element (psrace.log) to the iraceResults

list saved in the irace log file. The postselection log consists of a list with the following elements:

configurations: Configurations used in the postselection race.

instances: Instances used in the in the postselection race.

maxExperiments: Configuration budget assigned for the postselection race.

experiments: Matrix of experiments in the same format as the iraceResults$experiments

matrix. The column names indicate the candidate configuration identifier and the row
names contain the name of the instances.

elites: Elite configurations obtained in the postselection race.

Optionally, it is possible to perform a postselection race with all elite configurations of the
iterations or selecting a set of configurations from iraceResults$allConfigurations.

46

Execute all elite configurations in the iterations

psRace(iraceLogFile="irace.Rdata", elites=TRUE)

Execute a set of configurations IDs providing budget

psRace(iraceLogFile="irace.Rdata",

conf.ids=c(34, 87, 102, 172, 293),

max.experiments=500)

11 List of command-line and scenario options

Most irace options can be specified in the command line using a flag or in the irace scenario
file using the option name (or setting their value in the scenario list passed to the various R

functions exported by the package). This section describes the various irace options that can be
specified by the user in this way.

Relative filesystem paths (e.g., ../scenario/) given in the command-line are relative to the
current working directory (the directory at which irace is invoked). However, paths given in the
scenario file are relative to the directory containing the scenario file. See also Table 1.

11.1 General options

--help flag: -h or --help default:
Show the list of command-line options of irace.

--version flag: -v or --version default:
Show the version of irace.

--check flag: -c or --check default:
Check that the scenario and parameter definitions are correct and test the execution of the
target algorithm. See Section 4.

scenarioFile flag: -s or --scenario default: ./scenario.txt
File that contains the scenario setup and other irace options. All options listed in this
section can be included in this file. See $IRACE_HOME/templates/ for an example. Relative
file-system paths specified in the scenario file are relative to the scenario file itself.

execDir flag: --exec-dir default: ./
Directory where the target algorithm executions will be performed. The default execution
directory is the current directory.

The execution directory must exist before executing irace, it will not be created
automatically.

logFile flag: -l or --log-file default: ./irace.Rdata
File to save tuning results as an R dataset. The provided path must be either an absolute
path or relative to execDir. See Section 9.2 for details on the format of the R dataset.

debugLevel flag: --debug-level default: 0
Level of information to display in the text output of irace. A value of 0 silences all debug
messages. Higher values provide more verbose debug messages. Details about the text
output of irace are given in Section 9.1.

47

seed flag: --seed default:
Seed to initiallize the random number generator. The seed must be a positive integer. If
the seed is "" or NULL, a random seed will be generated.

repairConfiguration default:
User-defined R function that takes a configuration generated by irace and repairs it. See
Section 5.7 for details.

postselection flag: --postselection default: 0
Percentage of the configuration budget used to perform a postselection race of the best
configurations of each iteration after the execution of irace. See Section 10.10.

11.2 Elitist irace

elitist flag: -e or --elitist default: 1
Enable/disable elitist irace.

In the elitist version of irace [8], elite configurations are not discarded from the race until
non-elite configurations have been executed on the same instances as the elite configura-
tions.

Each race begins by evaluating all configurations on a number of new instances. This
number is defined by the option elitistNewInstances. After the new instances have
been evaluated, configurations are evaluated on instances seen in the previous race. Elite
configurations already have results for most of these previous instances and, therefore, do
not need to be re-evaluated. Finally, after configurations have been evaluated on all these
instances, the race continues by evaluating additional new instances.

The statistical tests can be performed at any moment during the race according to the
setting of the options firstTest and eachTest. The elitist rule forbids discarding elite
configurations, even if the show poor performance, until the last of the previous instances
is seen in the race.

The non-elitist version of irace can discard elite configurations at any point of the race,
instances are not re-used from one race to the next, and new instances are sampled for
each race.

elitistNewInstances flag: --elitist-new-instances default: 1
Number of new instances added to each race before evaluating instances from previous
races (only for elitist irace).

If deterministic is TRUE then the number of elitistNewInstances will be reduced or set
to 0 once all instances have been evaluated.

elitistLimit flag: --elitist-limit default: 2
Maximum number of statistical tests performed without successful elimination after all
instances from the previous race have been evaluated. If the limit is reached, the current
race is stopped. Only valid for elitist irace. Use 0 to disable the limit.

11.3 Internal irace options

nbIterations flag: --iterations default: 0
Minimum number of iterations to be executed. Each iteration involves the generation of

48

new configurations and the use of racing to select the best configurations. By default (with
0), irace calculates the minimum number of iterations as N iter = ⌊2 + log2 N

param⌋, where
Nparam is the number of non-fixed parameters to be tuned. We recommend to use the
default value.

nbExperimentsPerIteration flag: --experiments-per-iteration default: 0
Number of runs of the target algorithm per iteration. By default (when equal to 0), this
value changes for each iteration and depends on the iteration index and the remaining
budget. Further details are provided in the irace paper [8]. We recommend to use the
default value.

sampleInstances flag: --sample-instances default: 1
Enable/disable the sampling of the training instances. If the option sampleInstances is
disabled, the instances are used in the order provided in the trainInstancesFile or in
the order they are read from the trainInstancesDir whentrainInstancesFile is not
provided. For more information about training instances see Section 5.4.

minNbSurvival flag: --min-survival default: 0
Minimum number of configurations needed to continue the execution of each race (itera-
tion). If the number of configurations alive in the race is not larger than this value, the
current iteration will stop and a new iteration will start, even if there is budget left to con-
tinue the current race. By default (when equal to 0), the value is calculated automatically
as ⌊2 + log2 N

param⌋, where Nparam is the number of non-fixed parameters to be tuned.

nbConfigurations flag: --num-configurations default: 0
The number of configurations that will be raced at each iteration. By default (when equal to
0), this value changes for each iteration and depends on nbExperimentsPerIteration, the
iteration index and mu. The precise details are given in the irace paper [8]. We recommend
to use the default value.

mu flag: --mu default: 5
Parameter used to define the number of configurations to be sampled and evaluated at each
iteration. The number of configurations will be calculated such that there is enough budget
in each race to evaluate all configurations on at least µ+min(5, j) training instances, where
j is the index of the current iteration. The value of µ will be adjusted to never be lower
than the value of firstTest. We recommend to use the default value and, if needed, adjust
firstTestand eachTest, instead.

softRestart flag: --soft-restart default: 1
Enable/disable the soft-restart strategy that avoids premature convergence of the proba-
bilistic model. When a sampled configuration is similar to its parent configuration, the
probabilistic model of these configurations is soft restarted. The soft-restart mechanism is
explained in the irace paper [8]. The similarity of categorical and ordinal parameters is
given by the hamming distance, and the option softRestartThreshold defines the simi-
larity of numerical parameters.

softRestartThreshold flag: --soft-restart-threshold default:
Soft restart threshold value for numerical parameters. By default, it is computed as
10−digits, where digits corresponds to the irace option explained in this section.

49

11.4 Target algorithm parameters

parameterFile flag: -p or --parameter-file default: ./parameters.txt
File that contains the description of the parameters of the target algorithm. See Section 5.1.

forbiddenFile flag: --forbidden-file default:
File containing a list of logical expressions that cannot be true for any evaluated configu-
ration. If empty or NULL, no forbidden configurations are considered. See Section 5.6 for
more information.

digits flag: --digits default: 4
Maximum number of decimal places that are significant for numerical (real) parameters.

11.5 Target algorithm execution

targetRunner flag: --target-runner default: ./target-runner
This option defines a script or an R function that evaluates a configuration of the target
algorithm on a particular instance. See Section 5.2 for details.

targetRunnerRetries flag: --target-runner-retries default: 0
Number of times to retry a call to targetRunner if the call failed.

targetRunnerData default:
Optional data passed to targetRunner. This is ignored by the default targetRunner

function, but it may be used by custom targetRunner functions to pass persistent data
around.

targetRunnerParallel default:
Optional R function to provide custom parallelization of targetRunner. See Section 6 for
more information.

targetEvaluator flag: --target-evaluator default:
Optional script or R function that returns a numerical value for an experiment after all
configurations have been executed on a given instance using targetRunner. See Section 5.3
for details.

deterministic flag: --deterministic default: 0
Enable/disable deterministic target algorithm mode. If the target algorithm is determin-
istic, configurations will be evaluated only once per instance. See Section 5.4 for more
information.

If the number of instances provided is less than the value specified for the option
firstTest, no statistical test will be performed.

parallel flag: --parallel default: 0
Number of calls of the targetRunner to execute in parallel. Values 0 or 1 mean no paral-
lelization. For more information on parallelization, see Section 6.

loadBalancing flag: --load-balancing default: 1
Enable/disable load-balancing when executing experiments in parallel. Load-balancing
makes better use of computing resources, but increases communication overhead. If this
overhead is large, disabling load-balancing may be faster. See Section 6.

50

mpi flag: --mpi default: 0
Enable/disable use of Rmpi to execute the targetRunner in parallel using MPI protocol.
When mpi is enabled, the option parallel is the number of slave nodes. See Section 6.

batchmode flag: --batchmode default: 0
Specify how irace waits for jobs to finish when targetRunner submits jobs to a batch
cluster: sge, pbs, torque or slurm (targetRunner must submit jobs to the cluster using.
for example, qsub). See Section 6.

11.6 Initial configurations

configurationsFile flag: --configurations-file default:
File containing a list of initial configurations. If empty or NULL, irace will not use initial
configurations. See Section 5.5.

The provided configurations must not violate the constraints described in parameterFile

and forbiddenFile.

11.7 Training instances

trainInstancesDir flag: --train-instances-dir default: ./Instances
Directory where training instances are located; either absolute path or relative to current
directory. See Section 5.4.

trainInstancesFile flag: --train-instances-file default:
File that contains a list of instances and optionally additional parameters for them. See
Section 5.4.

The list of instances in trainInstancesFile is interpreted as file-system paths relative to
trainInstancesDir. When using an absolute path or instances that are not files, set
trainInstancesDir="".

11.8 Tuning budget

maxExperiments flag: --max-experiments default: 0
The maximum number of runs (invocations of targetRunner) that will be performed. It
determines the maximum budget of experiments for the tuning. See Section 10.1.

maxTime flag: --max-time default: 0
The maximum total time in seconds for the runs of targetRunner that will be performed.
The mean execution time of each run is estimated in order to calculate the maximum
number of experiments (see option budgetEstimation). When maxTime is positive, then
targetRunner must return the execution time as its second output. See Section 10.1.

budgetEstimation flag: --budget-estimation default: 0.02
Fraction (smaller than 1) of the budget used to estimate the mean execution time of a
configuration. Only used when maxTime > 0. See Section 10.1.

51

11.9 Statistical test

testType flag: --test-type default: F-test
Specifies the statistical test used for elimination:

F-test (Friedman test)

t-test (pairwise t-tests with no correction)

t-test-bonferroni (t-test with Bonferroni’s correction for multiple comparisons)

t-test-holm (t-test with Holm’s correction for multiple comparisons).

We recommend to not use corrections for multiple comparisons because the test typically
becomes too strict and the search stagnates. See Section 10.6 for details about choosing
the statistical test most appropriate for your scenario.

The default setting of testType is F-test unless the capping option is enabled in which
case, the default setting is defined as t-test.

firstTest flag: --first-test default: 5
Specifies how many instances are evaluated before the first elimination test.

The value of firstTest must be a multiple of eachTest.

eachTest flag: --each-test default: 1
Specifies how many instances are evaluated between elimination tests.

confidence flag: --confidence default: 0.95
Confidence level for the elimination test.

11.10 Adaptive capping

capping flag: --capping default: 0
Enable the use of adaptive capping. This option is only available when elitist is ac-
tive. When using this option, irace provides an execution bound to each target algorithm
execution (See Section 5.2). For more details about this option See Section 10.3.

cappingType flag: --capping-type default: median
Specifies the measure used to define the execution bound:

median (the median of the performance of the elite configurations)

mean (the mean of the performance of the elite configurations)

best (the best performance of the elite configurations)

worst (the worst performance of the elite configurations).

boundType flag: --bound-type default: candidate
Specifies how to calculate the performance of elite configurations for the execution bound:

candidate (performance of candidates is aggregated across the instances already exe-
cuted)

52

instance (performance of candidates on each instance).

boundMax flag: --bound-max default: 0
Maximum execution bound for targetRunner. It must be specified when capping is en-
abled.

boundDigits flag: --bound-digits default: 0
Precision used for calculating the execution time. It must be specified when capping is
enabled.

boundPar flag: --bound-par default: 1
Penalty used for PARX. This value is used to penalize timed out executions, see Sec-
tion 10.3.

boundAsTimeout flag: --bound-as-timeout default: 1
Replace the configuration cost of bounded executions with boundMax. See Section 10.3.

11.11 Recovery

recoveryFile flag: --recovery-file default:
Previously saved irace log file that should be used to recover the execution of irace; ei-
ther absolute path or relative to the current directory. If empty or NULL, recovery is not
performed. For more details about recovery, see Section 8.

11.12 Testing

--only-test flag: --only-test default:
Run the configurations contained in the file provided as argument on the test instances.
See Section 7.

testInstancesDir flag: --test-instances-dir default:
Directory where testing instances are located, either absolute or relative to the current
directory.

testInstancesFile flag: --test-instances-file default:
File containing a list of test instances and, optionally, additional parameters for them.

testNbElites flag: --test-num-elites default: 1
Number of elite configurations returned by irace that will be tested if test instances are
provided. For more information about the testing, see Section 7.

testIterationElites flag: --test-iteration-elites default: 0
Enable/disable testing the elite configurations found at each iteration.

12 FAQ (Frequently Asked Questions)

12.1 Is irace minimizing or maximizing the output of my algorithm?

By default, irace considers that the value returned by targetRunner (or by targetEvaluator,
if used) should be minimized. In case of a maximization problem, one can simply multiply
the value by -1 before returning it to irace. This is done, for example, when maximizing the
hypervolume (see the last lines in $IRACE_HOME/examples/hypervolume/target-evaluator).

53

12.2 Is it possible to configure a MATLAB algorithm with irace?

Definitely. There are three main ways to achieve this:

1. Edit the targetRunner script to call MATLAB in a non-interactive way. See the MAT-

LAB documentation, or the following links.45 You would need to pass the parameter re-
ceived by targetRunner to your MATLAB script.67 There is a minimal example in $IRACE_

HOME/examples/matlab/.

2. Call MATLAB code directly from R using the matlabr package (https://cran.r-project.
org/package=matlabr). This is a better option if you are experienced in R. Define targetRunner
as an R function instead of a path to a script. The function should call your MATLAB code
with appropriate parameters.

3. Another possibility is calling MATLAB directly from a different programming language and
write targetRunner in that programming language, for example, in Python (see examples in
$IRACE_HOME/examples/target-runner-python/).8

12.3 My program works perfectly on its own, but not when running
under irace. Is irace broken?

Every time this was reported, it was a difficult-to-reproduce bug, i.e., a Heisenbug, in the program
(target algorithm), not in irace. To detect such bugs, we recommend that you use, within
targetRunner, a memory debugger (e.g., valgrind) to run your program. For example, if your
program is executed by targetRunner as:

${EXE} ${FIXED_PARAMS} -i ${INSTANCE} ${CONFIG_PARAMS} 1> ${STDOUT} 2> ${STDERR}

then replace that line with:

valgrind --error-exitcode=1 ${EXE} ${FIXED_PARAMS} -i ${INSTANCE} \

${CONFIG_PARAMS} 1> ${STDOUT} 2> ${STDERR}

If there are bugs in your program, they will appear in $STDERR, thus do not delete those files.
Memory debuggers will significantly slowdown your code, so use them only as a means to find
what is wrong with your target algorithm. Once you have fixed the bugs, you should remove the
use of valgrind.

12.4 My program may be buggy and run into an infinite loop. Is it
possible to set a maximum timeout?

We are not aware of any way to achieve this using R. However, in GNU/Linux, it is easy to
implement by using the timeout command in targetRunner when invoking your program.

4http://stackoverflow.com/questions/1518072/suppress-start-message-of-matlab
5http://stackoverflow.com/questions/4611195/how-to-call-matlab-from-command-line-and-print-to-

stdout-before-exiting
6https://www.mathworks.com/matlabcentral/answers/97204-how-can-i-pass-input-parameters-when-

running-matlab-in-batch-mode-in-windows
7https://stackoverflow.com/questions/3335505/how-can-i-pass-command-line-arguments-to-a-

standalone-matlab-executable-running
8https://www.mathworks.com/help/matlab/matlab_external/call-matlab-functions-from-python.html

https://www.mathworks.com/help/matlab/matlab_external/call-user-script-and-function-from-

python.html

54

https://cran.r-project.org/package=matlabr
https://cran.r-project.org/package=matlabr
https://en.wikipedia.org/wiki/Heisenbug
http://valgrind.org/
http://stackoverflow.com/questions/1518072/suppress-start-message-of-matlab
http://stackoverflow.com/questions/4611195/how-to-call-matlab-from-command-line-and-print-to-stdout-before-exiting
http://stackoverflow.com/questions/4611195/how-to-call-matlab-from-command-line-and-print-to-stdout-before-exiting
https://www.mathworks.com/matlabcentral/answers/97204-how-can-i-pass-input-parameters-when-running-matlab-in-batch-mode-in-windows
https://www.mathworks.com/matlabcentral/answers/97204-how-can-i-pass-input-parameters-when-running-matlab-in-batch-mode-in-windows
https://stackoverflow.com/questions/3335505/how-can-i-pass-command-line-arguments-to-a-standalone-matlab-executable-running
https://stackoverflow.com/questions/3335505/how-can-i-pass-command-line-arguments-to-a-standalone-matlab-executable-running
https://www.mathworks.com/help/matlab/matlab_external/call-matlab-functions-from-python.html
https://www.mathworks.com/help/matlab/matlab_external/call-user-script-and-function-from-python.html
https://www.mathworks.com/help/matlab/matlab_external/call-user-script-and-function-from-python.html

12.5 When using the mpi option, irace is aborted with an error message
indicating that a function is not defined. How to fix this?

Rmpi does not work the same way when called from within a package and when called from a
script or interactively. When irace creates the slave nodes, the slaves will load a copy of irace

automatically. If the slave nodes are on different machines, they must have irace installed. If
irace is not installed system-wide, R needs to be able to find irace on the slave nodes. This is
usually done by setting R_LIBS, .libPaths() or by loading irace using library() or require()
with the argument “lib.loc”. The settings on the master are not applied to the slave nodes
automatically, thus the slave nodes may need their own settings. After spawning the slaves, it is
too late to modify those settings, thus modifying the shell variable R_LIBS seems the only valid
way to tell the slaves where to find irace.

If the path is set correctly and the problem persists, please check these instructions:

1. Test that irace and Rmpi work. Run irace on a single machine (submit node), without calling
qsub, mpirun or a similar wrapper around irace or R.

2. Test loading irace on the slave nodes. However, jobs submitted by qsub/mpirun may load
R packages using a different mechanism from the way it happens if you log directly into the
node (e.g., with ssh). Thus, you need to write a little R program such as:

library(Rmpi)

mpi.spawn.Rslaves(nslaves = 10)

paths <- mpi.applyLB(1:10, function(x) {

library(irace); return(path.package("irace")) })

print(paths)

Submit this program to the cluster like you would submit irace (using qsub, mpirun or what-
ever program is used to submit jobs to the cluster).

3. In the script bin/parallel-irace-mpi, the function irace_main() creates an MPI job for
our cluster. You may need to speak with the admin of your cluster and ask them how to best
submit a job for MPI. There may be some particular settings that you need. Rmpi normally
creates log files; but irace suppresses those files unless debugLevel > 0.

Please contact us (Section 13) if you have further problems.

12.6 Error: 4 arguments passed to .Internal(nchar) which requires 3

This is a bug in R 3.2.0 on Windows. The solution is to update your version of R.

12.7 How are relative filesystem paths interpreted by irace?

The answer depends on where the path appears. Relative paths may appear as the argument
of command-line options, as the value of options given in the scenario file, or within various
scripts, functions or instance files. Table 1 summarizes how paths are translated from relative to
absolute.

55

Table 1: Translation of relative to absolute filesystem paths.

Relative path appears as is relative to . . .

a string within trainInstancesFile trainInstancesDir

a string within testInstancesFile testInstancesDir

code within targetRunner or targetEvaluator execDir

the value of logFile or --log-file execDir

the value of other options in the scenario file the directory containing the scenario file
the value of other command-line options invocation (working) directory of irace

12.8 My parameter space is small enough that irace could generate all
possible configurations; however, irace generates repeated config-
urations and/or does not generate some of them. Is this a bug?

Currently, irace does not try to detect whether all possible configurations can be evaluated for
the given budget, thus, the initial random sampling performed by irace may generate repeated
configurations and/or never generate some configurations, which is not ideal. The ideal approach
in such cases is to provide all configurations explicitly to irace (Section 5.5) and execute a single
race (nbIterations=1). Hopefully, a future version of irace will automatically detect this case
and switch to basic racing.

13 Resources and contact information

More information about the package can be found on the irace webpage:

http://iridia.ulb.ac.be/irace/

For questions and suggestions please contact the development team through the irace package
Google group:

https://groups.google.com/d/forum/irace-package

or by sending an email to:

irace-package@googlegroups.com

14 Acknowledgements

We would like to thank all the people that directly or indirectly have collaborated in the devel-
opment and improvement of irace: Prasanna Balaprakash, Zhi (Eric) Yuan, Franco Mascia,
Alberto Franzin, Anthony Antoun, Esteban Diaz Leiva, Federico Caselli, Pablo Valledor Pellicer,
and André de Souza Andrade.

Bibliography

[1] M. Birattari. On the estimation of the expected performance of a metaheuristic on a class of
instances. how many instances, how many runs? Technical Report TR/IRIDIA/2004-001,
IRIDIA, Université Libre de Bruxelles, Belgium, 2004.

56

http://iridia.ulb.ac.be/irace/
https://groups.google.com/d/forum/irace-package
mailto:irace-package@googlegroups.com

[2] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-race and iterated F-race: An
overview. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors,
Experimental Methods for the Analysis of Optimization Algorithms, pages 311–336. Springer,
Berlin, Germany, 2010.

[3] B. Bischl, M. Lang, J. Bossek, L. Judt, J. Richter, T. Kuehn, and E. Studerus. mlr: Machine
Learning in R, 2013. URL http://cran.r-project.org/package=mlr. R package.

[4] C. Fawcett and H. H. Hoos. Analysing differences between algorithm configurations through
ablation. Journal of Heuristics, 22(4):431–458, 2016.

[5] C. M. Fonseca, L. Paquete, and M. López-Ibáñez. An improved dimension-sweep algo-
rithm for the hypervolume indicator. In Proceedings of the 2006 Congress on Evolutionary
Computation (CEC 2006), pages 1157–1163. IEEE Press, Piscataway, NJ, July 2006. doi:
10.1109/CEC.2006.1688440.

[6] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: an automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267–306, Oct. 2009.

[7] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace package,
iterated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium, 2011. URL http://iridia.ulb.ac.

be/IridiaTrSeries/IridiaTr2011-004.pdf.

[8] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and M. Birattari. The
irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives, 3:43–58, 2016. doi: 10.1016/j.orp.2016.09.002.

[9] C. C. McGeoch. Analyzing algorithms by simulation: Variance reduction techniques and
simulation speedups. ACM Computing Surveys, 24(2):195–212, 1992. doi: 10.1145/130844.
130853.

[10] L. Pérez Cáceres, M. López-Ibáñez, H. H. Hoos, and T. Stützle. An experimental study
of adaptive capping in irace. In R. Battiti, D. E. Kvasov, and Y. D. Sergeyev, editors,
Learning and Intelligent Optimization, 11th International Conference, LION 11, volume
10556 of Lecture Notes in Computer Science, pages 235–250. Springer, Cham, Switzerland,
2017. doi: 10.1007/978-3-319-69404-7_17.

[11] M. Schneider and H. H. Hoos. Quantifying homogeneity of instance sets for algorithm config-
uration. In Y. Hamadi and M. Schoenauer, editors, Learning and Intelligent Optimization,
6th International Conference, LION 6, volume 7219 of Lecture Notes in Computer Science,
pages 190–204. Springer, Heidelberg, Germany, 2012. doi: 10.1007/978-3-642-34413-8_14.

57

http://cran.r-project.org/package=mlr
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

Appendix A Installing R

This section gives a quick R installation guide that will work in most cases. The official instruc-
tions are available at https://cran.r-project.org/doc/manuals/r-release/R-admin.html

A.1 GNU/Linux

You should install R from your package manager. On a Debian/Ubuntu system it will be some-
thing like:

sudo apt-get install r-base

Once R is installed, you can launch R from the Terminal and from the R prompt install the
irace package (see Section 3.2).

A.2 OS X

You can install R directly from a CRAN mirror.9 Alternatively, if you use homebrew, you can
just brew the R formula from the science tap (unfortunately it does not come already bottled so
you need to have Xcode10 installed to compile it):

brew tap homebrew/science

brew install r

Once R is installed, you can launch R from the Terminal (or from your Applications), and
from the R prompt install the irace package (see Section 3.2).

A.3 Windows

You can install R from a CRAN mirror.11 We recommend that you install R on a filesystem
path without spaces, special characters or long names, such as C:\R. Once R is installed, you
can launch the R console and install the irace package from it (see Section 3.2).

Appendix B targetRunner troubleshooting checklist

If the targetRunner script fails to return the output expected by irace, it can be sometimes
difficult to diagnose where the problem lies. The more descriptive errors provided by your
script, the easier it will be to debug it. If targetRunner enters an infinite loop, irace will wait
indefinitely (see FAQ in Section 12.4). If you are using temporary files to redirect the output of
your algorithm, check that these files are properly created. We recommend to follow the structure
of the example file (target-runner) provided in $IRACE_HOME/templates. The following error
examples are based on that example file.

In case of failure of targetRunner, irace will print an error on its output describing which
execution of targetRunner failed. Follow this checklist to detect where the problem is:

1. Make sure that your targetRunner script or program is at the specified location. If you see
this error:
9https://cran.r-project.org/bin/macosx/

10Xcode download webpage: https://developer.apple.com/xcode/download/
11https://cran.r-project.org/bin/windows/

58

https://cran.r-project.org/doc/manuals/r-release/R-admin.html
https://cran.r-project.org/bin/macosx/
https://developer.apple.com/xcode/download/
https://cran.r-project.org/bin/windows/

Error: == irace == target runner '~/tuning/target-runner' does not exist

it means that irace cannot find the target-runner file. Check that the file is at the path
specified by the error.

2. Make sure that your targetRunner script is an executable file and the user running irace has
permission to execute it. The following errors:

Error: == irace == target runner '~/tuning/target-runner' is a directory,

not a file

or

Error: == irace == target runner '~/tuning/target-runner' is not executable

mean that your targetRunner is not an executable file. In the first case, the script is a folder
and therefore there must be a problem with the name of the script. In the second case, you
must make the file executable, which in GNU/Linux can be done by:

chmod +x ~/tuning/target-runner

3. If your targetRunner script calls another program, make sure it is at the location described
in the script (variable EXE in the examples and templates). A typical output for such an error
is:

Error: == irace == running command ''~/tuning/target-runner' 1 8 676651103

~/tuning/Instances/1000-16.tsp --ras --localsearch 2 --alpha 4.03 --beta 1.89

--rho 0.02 --ants 37 --nnls 48 --dlb 0 --rasranks 15 2>\&1' had status 1

== irace == The call to target.runner.default was:

~/tuning/target-runner 1 8 676651103 ~/tuning/Instances/1000-16.tsp --ras

--localsearch 2 --alpha 4.03 --beta 1.89 --rho 0.02 --ants 37 --nnls 48

--dlb 0 --rasranks 15

== irace == The output was:

Tue May 3 19:00:37 UTC 2016: error: ~/bin/acotsp: not found or not executable

(pwd: ~/tuning/acotsp-arena)

You may test your script by copying the command line shown in the error and executing
target-runner directly on the execution directory (execDir). In this case, the command
line is:

~/tuning/target-runner 1 8 676651103 ~/tuning/Instances/1000-16.tsp --ras \

--localsearch 2 --alpha 4.03 --beta 1.89 --rho 0.02 --ants 37 --nnls 48 \

--dlb 0 --rasranks 15

This executes the targetRunner script as irace does. The output of this script must be only
one number.

4. Check that your targetRunner script is actually returning one number as output. For exam-
ple:

Error: == irace == The output of '~/tuning/target-runner 1 25 365157769

~/tuning/Instances/1000-31.tsp --ras --localsearch 1 --alpha 0.26 --beta

6.95 --rho 0.69 --ants 56 --nnls 10 --dlb 0 --rasranks 7' is not numeric!

== irace == The output was:

Solution: 24479793

59

In the example above, the output of target-runner is “Solution: 24479793”, which is not
a number. If target-runner is parsing the output of the target algorithm, you need to verify
that the code only parses the solution cost value.

5. Check that your targetRunner script is creating the output files for your algorithm. If you
see an error as:

== irace == The output was: Tue May 3 19:41:40 UTC 2016:

error: c1-9.stdout: No such file or directory

The output file of the execution of your algorithm has not been created (check permissions)
or has been deleted before the result can be read.

6. Other errors can produce the following output:

== irace == The output was: Tue May 3 19:49:06 UTC 2016:

error: c1-23.stdout: Output is not a number

This might be because your targetRunner script is not executing your algorithm correctly.
To further investigate this issue, comment out the line that eliminates the temporary files
that saves the output of your algorithm. Similar to this one

rm -f "${STDOUT}" "${STDERR}"

Execute directly the targetRunner command-line that is provided in the error message, look
in your execution directory for the files that are created. Check the .stderr file for errors
and the .stdout file to see the output that your algorithm produces.

7. Some command within targetRunner may not be working correctly. In that case, you must
debug the commands individually exactly as irace executes them. In order to find where the
problem is, print the commands to a log file before executing them. For example:

echo "$EXE ${FIXED_PARAMS} -i $INSTANCE ${CONFIG_PARAMS}" >> ${STDERR}.log

$EXE ${FIXED_PARAMS} -i $INSTANCE ${CONFIG_PARAMS} 1> ${STDOUT} 2> ${STDERR}

then look at the $STDERR.log file corresponding to the targetRunner call that failed and
execute/debug the last command there.

8. It is possible that transient bugs in the target algorithm are only visible when running within
irace, and all commands within targetRunner appear to work fine when executed directly in
the command-line outside irace. See FAQ in Section 12.3) for suggestions on how to detect
such bugs.

9. If your targetRunner script works when running irace with parallel=0 but it fails when
using higher number of cores, this may be due to any number of reasons:

• If you submit jobs through a queuing system, the running environment when using the
queuing system may not be the same as when you launch irace yourself. The queuing
system may also send the job to different machines depending on the number of CPUs
requested. One way to test this is to submit the failing execution of targetRunner to the
queuing system, and specifically to any problematic machine.

• When using MPI, some calls to targetRunner may run on different computers than the
one running the master irace process. See FAQ in Section 12.5.

60

https://en.wikipedia.org/wiki/Heisenbug

• Does targetRunner read or create intermediate files? These files may cause a race condi-
tion when two calls to targetRunner happen at the same time. You have to make sure
that parallel runs of targetRunner do not interfere with each other’s files.

• Maybe these files consume too much memory or fill the filesystem when there are simulta-
neous targetRunner calls? Moreover, queuing systems have stricter limits for computing
nodes than for the submit/host node.

• Does the machine or the queuing system impose any limits on number of processes or
CPU/memory/filesystem usage per job? Such limits may only trigger when more than one
process is executed in parallel, killing the targetRunner process before it has a chance
to print anything useful. In that case, irace may not detect the the program finished
unexpectedly, only that the expected output was not printed.

Appendix C targetEvaluator troubleshooting checklist

Even if targetRunner appears to work, the use of targetEvaluator may lead to other problems.
The same checklist of targetRunner can be followed here. In addition, we list here other potential
problems unique to targetEvaluator:

1. If targetEvaluator fails only in the second or later iteration, this may because output
files or data generated by a previous call to targetRunner are missing. Elite configurations
are never re-executed on the same instance and seed pair, that is, irace will call only once
targetRunner for each pair of configuration ID and instance ID. However, targetEvaluator
is always re-executed, which takes into account any updated information (normalization
bounds, reference sets/points, best-known values, etc.). Thus, any files or data generated by
targetRunner for a given configuration must remain available to targetEvaluator as long
as that configuration is alive. The list of alive configurations is passed to targetEvaluator,
which may decide then which data to keep or remove.

Appendix D Glossary

Parameter tuning: Process of searching good settings for the parameters of an algorithm under
a particular tuning scenario (instances, execution time, etc.).

Scenario: Settings that define an instance of the tuning problem. These settings include the
algorithm to be tuned (target), budget for the execution of the target algorithm (execution
time, evaluations, iterations, etc.), set of problem instances and all the information that is
required to perform the tuning.

Target algorithm: Algorithm whose parameters will be tuned.

Target parameter: Parameter of the target algorithm that will be tuned.

irace option: Configurable option of irace.

Elite configurations: Best configurations found so far by irace. New configurations for the
next iteration of irace are sampled from the probabilistic models associated to the elite
configurations. All elite configurations are also included in the next iteration.

$IRACE_HOME: The filesystem path where irace is installed. You can find this information by
opening an R console and executing:

61

system.file(package = "irace")

Appendix E NEWS

NEWS

3.1

* Use testthat for unit testing. (Manuel López-Ibáñez)

* Allow instances to be a list of arbitrary R objects (mlr bugfix).

(Manuel López-Ibáñez)

3.0 (05/07/2018)

* irace now supports adaptive capping for computation time minimization.

The default value of the testType option is t-test when adaptive capping

is enabled. Please see the user-guide for details.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The package contains an ablation() function implementing the ablation

method for parameter importance analysis by Fawcett and Hoos (2016).

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* New option 'postselection' executes a post-selection race.

(Leslie Pérez Cáceres)

* At the end of each race, if the race stops before evaluating all instances

seen in previous races, then the best overall may be different than the best

of the race. We now print the best overall (best-so-far). Elites evaluated

on more instances are considered better than those evaluated on fewer.

(Manuel López-Ibáñez, Leslie Pérez Cáceres)

* Last active parameter values of numerical parameters (i and r) are carried

by the sampling model. When a value must be assigned and the parameter was

previously not active, the sampling is performed around the last value.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* R help pages are now generated with Roxygen2.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The user guide documents --version, --help, and --check.

(Manuel López-Ibáñez)

* A return value of "Inf" from targetRunner/targetEvaluation results in the

immediate rejection of the configuration without any further evaluation.

This is useful for handling unreliable or broken configurations that should

not stop irace. (Manuel López-Ibáñez)

* Numerical parameters may be sampled on a logarithmic scale using "i,log"

or "r,log". (Alberto Franzin)

* New target-runner.bat for Windows contributed by André de Souza Andrade.

* Fixed all shell scripts calling functions before defining them, which is not

portable.

(Manuel López-Ibáñez)

* Fixed '--parallel' bug in Windows that resulted in

62

"Error in checkForRemoteErrors(val)"

(Manuel López-Ibáñez)

* Improve error message when no training instances are given.

(Manuel López-Ibáñez)

2.4

* The output of irace now specifies in which order, if any, configurations are

printed.

(Manuel López-Ibáñez, suggested by Markus Wagner)

* Several fixes for handling paths in Windows.

(Manuel López-Ibáñez)

* readConfigurationsFile() now has a text= argument, which allows reading

configurations from a string.

(Manuel López-Ibáñez)

* User-provided functions (targetRunner, targetEvaluator and

repairConfiguration) and user-provided conditions for forbidden

configurations are now byte-compiled when read, which should make their

evaluation noticeably faster.

(Manuel López-Ibáñez)

* The argument 'experiment' passed to the R function targetRunner does not

contain anymore an element 'extra.params'. Similarly, the 'scenario'

structure does not contain anymore the elements 'instances.extra.params' and

'testInstances.extra.params'. Any instance-specific parameters values now

form part of the character string that defines an instance and it is up to

the user-defined targetRunner to parse them appropriately. These changes

make no difference when targetRunner is an external script, or when

instances and instance-specific parameter values are read from a file.

(Manuel López-Ibáñez)

2.3

* Fix bug that will cause iraceResults$experimentLog to count calls to

targetEvaluator as experiments, even if no call to targetRunner was

performed. This does not affect the computation of the budget consumed and,

thus, it does not affect the termination criteria of irace. The bug triggers

an assertion that terminates irace, thus no run that was successful with

version 2.2 is affected.

(Manuel López-Ibáñez)

2.2

* Command-line parameters are printed to stdout (useful for future

replications). (Manuel López-Ibáñez, suggested by Markus Wagner)

* Users may provide a function to repair configurations before being

evaluated. See the scenario variable repairConfiguration.

(Manuel López-Ibáñez)

* The option --sge-cluster (sgeCluster) was removed and replaced by

--batchmode (batchmode). It is now the responsibility of the target-runner

to parse the output of the batch job submission command (e.g., qsub or

squeue), and return just the job ID. Values supported are: "sge", "torque",

"pbs" and "slurm". (Manuel López-Ibáñez)

* The option --parallel can now be combined with --batchmode to limit the

63

number of jobs submitted by irace at once. This may be useful in batch

clusters that have a small queue of jobs.

(Manuel López-Ibáñez)

* New examples under inst/examples/batchmode-cluster/.

(Manuel López-Ibáñez)

* It is now possible to include scenario definition files from other scenario

files by using:

eval.parent(source("scenario-common.txt", chdir = TRUE, local = TRUE))

This feature is VERY experimental and the syntax is likely to change in the

future. (Manuel López-Ibáñez)

* Fix a bug that re-executed elite results under some circumstances.

(Leslie Pérez Cáceres)

* Restrict the number of maximum configurations per race to 1024.

(Leslie Pérez Cáceres)

* Do not warn if the last line in the instance file does not terminate with a

newline. (Manuel López-Ibáñez)

* Fix bug when deterministic == 1.

(Manuel López-Ibáñez, Leslie Pérez Cáceres)

* Update manual and vignette with details about the expected arguments and

return value of targetRunner and targetEvaluator. (Manuel López-Ibáñez)

* Many updates to the User Guide vignette. (Manuel López-Ibáñez)

* Fix \dontrun example in irace-package.Rd (Manuel López-Ibáñez)

* Fix bug: If testInstances contains duplicates, results of testing are not

correctly saved in iraceResults$testing$experiments nor reported correctly

at the end of a run. Now unique IDs of the form 1t, 2t, ... are used for

each testing instance. These IDs are used for the rownames of

iraceResults$testing$experiments and the names of the scenario$testInstances

and iraceResults$testing$seeds vectors. (Manuel López-Ibáñez)

* Fix bug where irace keeps retrying the target-runner call even if it

succeeds. (Manuel López-Ibáñez)

* New command-line parameter

--only-test FILE

which just evaluates the configurations given in FILE on the testing

instances defined by the scenario. Useful if you decide on the testing

instances only after running irace. (Manuel López-Ibáñez)

* Bugfix: When using maxTime != 0, the number of experiments performed may be

miscounted in some cases. (Manuel López-Ibáñez)

2.1

* Fix CRAN errors in tests. (Manuel López-Ibáñez)

* Avoid generating too many configurations at once if the initial time

estimation is too small. (Manuel López-Ibáñez)

64

2.0

* Minimum R version is 2.15.

* Elitist irace by default, it can be disabled with parameter --elitist 0.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The parameter --test-type gains two additional values:

t-test-bonferroni (t-test with Bonferroni's correction for multiple

comparisons),

t-test-holm (t-test with Holm's correction for multiple comparisons)

(Manuel López-Ibáñez)

* MPI does not create log files with --debug-level 0.

(Manuel López-Ibáñez)

* For simplicity, the parallel-irace-* scripts do not use an auxiliary

`tune-main` script. For customizing them, make a copy and edit them

directly.

(Manuel López-Ibáñez)

* New parameters:

--target-runner-retries : Retry target-runner this many times in case

of error.

(Manuel López-Ibáñez)

* We print diversity measures after evaluating on each instance:

(Leslie Pérez Cáceres)

- Kendall's W (also known as Kendall's coefficient of concordance) If 1,

all candidates have ranked in the same order in all instances. If 0, the

ranking of each candidate on each instance is essentially random.

W = Friedman / (m * (k-1))

- Spearman's rho: average (Spearman) correlation coefficient computed on the

ranks of all pairs of raters. If there are no repeated data values, a

perfect Spearman correlation of +1 or -1 occurs when each of the variables

is a perfect monotone function of the other.

* Many internal and external interfaces have changed. For example, now we

consistently use 'scenario' to denote the settings passed to irace and

'configuration' instead of 'candidate' to denote the parameter settings

passed to the target algorithm. Other changes are:

parameters$boundary -> parameters$domain

hookRun -> targetRunner

hookEvaluate -> targetEvaluator

tune-conf -> scenario.txt

instanceDir -> trainInstancesDir

instanceFile -> trainInstancesFile

testInstanceDir -> testInstancesDir

testInstanceFile -> testInstancesFile

* Minimal example of configuring a MATLAB program

(thanks to Esteban Diaz Leiva)

* Paths to files or directories given in the scenario file are relative to the

65

scenario file (except for --log-file, which is an output file and it is

relative to --exec-dir). Paths given in the command-line are relative to the

current working directory. Given

$ cat scenario/scenario.txt

targetRunner <- "./target-runner"

$ irace -s scenario/scenario.txt

irace will search for "./scenario/target-runner", but given

$ irace -s scenario/scenario.txt --target-runner ./target-runner

irace will search for "./target-runner". (Manuel López-Ibáñez)

* New command-line wrapper for Windows installed at

'system.file("bin/irace.bat", package="irace")'

(thanks to Anthony Antoun)

* Budget can be specified as maximum time (maxTime, --max-time) consumed by

the target algorithm. See the documentation for the details about how this

is handled.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

1.07

* The best configurations found, either at the end or at each iteration of an

irace run, can now be applied to a set of test instances different from the

training instances. See options testInstanceDir, testInstanceFile,

testNbElites, and testIterationElites. (Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The R interfaces of hookRun, hookEvaluate and hookRunParallel have changed.

See help(hook.run.default) and help(hook.evaluate.default) for examples of

the new interfaces.

* Printing of race progress now reports the actual configuration and instance

IDs, and numbers are printed in a more human-readable format.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* Reduce memory use for very large values of maxExperiments.

(Manuel López-Ibáñez, thanks to Federico Caselli for identifying the issue)

* New option --load-balancing (loadBalancing) for disabling load-balancing

when executing jobs in parallel. Load-balancing makes better use of

computing resources, but increases communication overhead. If this overhead

is large, disabling load-balancing may be faster.

(Manuel López-Ibáñez, thanks to Federico Caselli for identifying the issue)

* The option --parallel in Windows now uses load-balancing by default.

(Manuel López-Ibáñez)

* The wall-clock time after finishing each task is printed in the output.

(Manuel López-Ibáñez, thanks to Federico Caselli for providing an initial

patch)

1.06

* Fix bug that could introduce spurious whitespace when printing the

final configurations. (Manuel López-Ibáñez)

66

* Fix bug if there are more initial candidates than needed for the

first race. (Leslie Pérez Cáceres, Manuel López-Ibáñez)

* New configuration options, mainly for R users:

- hookRunParallel: Optional R function to provide custom

parallelization of hook.run.

- hookRunData: Optional data passed to hookRun. This is ignored by

the default hookRun function, but it may be used by custom hookRun R

functions to pass persistent data around.

(Manuel López-Ibáñez)

1.05

* New option --version. (Manuel López-Ibáñez)

* Terminate early if there is no sufficient budget to run irace with

the given settings. (Manuel López-Ibáñez)

* The option --parallel (without --mpi) now works under Windows.

(Manuel López-Ibáñez, thanks to Pablo Valledor Pellicer for testing

it)

* Improved error handling when running under Rmpi. Now irace will

terminate as soon as the master node detects at least one failed

slave node. This avoids irace reporting two times the same error.

Also, irace will print all the unique errors returned by all slaves

and not just the first one.

(Manuel López-Ibáñez)

* Forbidden configurations may be specified in terms of constraints

on their values. Forbidden configurations will never be evaluated by irace.

See --forbidden-file and inst/templates/forbidden.tmpl.

(Manuel López-Ibáñez)

* New option --recovery-file (recoveryFile) allows resuming a

previous irace run. (Leslie Pérez Cáceres)

* The confidence level for the elimination test is now

configurable with parameter --confidence. (Leslie Pérez Cáceres)

* Much more robust handling of relative/absolute paths. Improved support

for Windows. (Leslie Pérez Cáceres, Manuel López-Ibáñez)

* Provide better error messages for incorrect parameter

descriptions. (Manuel López-Ibáñez)

Examples:

x "" i (0, 0) # lower and upper bounds are the same

x "" r (1e-4, 5e-4) # given digits=2, ditto

x "" i (-1, -2) # lower bound must be smaller than upper bound

x "" c ("a", "a") # duplicated values

* Print elapsed time for calls to hook-run if debugLevel >=1.

(Manuel López-Ibáñez)

* examples/hook-run-python/hook-run: A multi-purpose hook-run written

in Python. (Franco Mascia)

* Parallel mode in an SGE cluster (--sge-cluster) is more

robust. (Manuel López-Ibáñez)

67

1.04

* Replace obsolete package multicore by package parallel

(requires R >= 2.14.0)

* Use load-balancing (mc.preschedule = FALSE) in mclapply.

1.03

* Use reg.finalizer to finish Rmpi properly without clobbering

.Last().

* Remove uses of deprecated as.real().

* Nicer error handling in readParameters.

* Add hypervolume (multi-objective) example.

* Fix several bugs in the computation of similar candidates.

1.02

* More concise output.

* The parameters expName and expDescription are now useless and they

were removed.

* Faster computation of similar candidates (Jeremie Dubois-Lacoste

and Leslie Pérez Cáceres).

* Fix bug when saving instances in tunerResults$experiments.

* irace.cmdline ("--help") does not try to quit R anymore.

1.01

* Fix bug caused by file.exists (and possibly other functions)

not handling directory names with a trailing backslash or slash on

Windows.

* Fix bug using per-instance parameters (Leslie Pérez Cáceres).

* Fix bug when reading initial candidates from a file.

68

	General information
	Background
	Version
	License

	Before starting
	Installation
	System requirements
	irace installation
	Install automatically within R
	Manual download and installation
	Local installation
	Testing the installation and invoking irace

	Running irace
	Step-by-step setup guide
	Setup example for ACOTSP

	Defining a configuration scenario
	Target algorithm parameters
	Parameter types
	Parameter domains
	Conditional parameters
	Parameter file format
	Parameters R format

	Target algorithm runner
	Target runner executable program
	Target runner R function

	Target evaluator
	Target evaluator executable program
	Target evaluator R function

	Training instances
	Initial configurations
	Forbidden configurations
	Repairing configurations

	Parallelization
	Testing (Validation) of configurations
	Recovering irace runs
	Output and results
	Text output
	R data file (logFile)
	Analysis of results

	Advanced topics
	Tuning budget
	Multi-objective tuning
	Tuning for minimizing computation time
	Hyper-pararameter optimization of machine learning methods
	Heterogeneous scenarios
	Choosing the statistical test
	Complex parameter space constraints
	Unreliable target algorithms and immediate rejection
	Ablation Analysis
	Postselection race

	List of command-line and scenario options
	General options
	Elitist irace
	Internal irace options
	Target algorithm parameters
	Target algorithm execution
	Initial configurations
	Training instances
	Tuning budget
	Statistical test
	Adaptive capping
	Recovery
	Testing

	FAQ (Frequently Asked Questions)
	Is irace minimizing or maximizing the output of my algorithm?
	Is it possible to configure a MATLAB algorithm with irace?
	My program works perfectly on its own, but not when running under irace. Is irace broken?
	My program may be buggy and run into an infinite loop. Is it possible to set a maximum timeout?
	When using the mpi option, irace is aborted with an error message indicating that a function is not defined. How to fix this?
	Error: 4 arguments passed to .Internal(nchar) which requires 3
	How are relative filesystem paths interpreted by irace?
	My parameter space is small enough that irace could generate all possible configurations; however, irace generates repeated configurations and/or does not generate some of them. Is this a bug?

	Resources and contact information
	Acknowledgements
	Bibliography
	Appendix Installing R
	GNU/Linux
	OS X
	Windows

	Appendix targetRunner troubleshooting checklist
	Appendix targetEvaluator troubleshooting checklist
	Appendix Glossary
	Appendix NEWS

