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Abstract

The IA-64 architecture co-developed by HP and Intel is
going to reach market in the second half of 2000 with
Itanium as its first implementation. All the major indus-
try players have endorsed this architecture and nowa-
days most of the specifications are public. To provide
for early availability of Linux on this platform, the port
started over two years ago at HP Labs and grew to be-
come an industry wide effort. A major milestone was
reached earlier this year, when the entire source code
produced to support this new platform was released to
the Open Source comunity. In this paper, we describe
some of the key system architecture features of IA-64
and the major machine dependent kernel subsystems.
We also give a brief update on the application level de-
velopments including the software development kit for
Linux/ia32 recently released.

1 Introduction

The Linux/ia64 project started over two years ago at HP
Labs with the initial toolchain and kernel work. This
activity later became part of a broader industry effort
known as the IA-64 Linux Project1 (formerly Trillian
project).

The goal of this project is to produce a single, fully func-
tional and optimized port of the entire Linux operating
system to the IA-64 architecture by the time the first sys-
tems reach market. Itanium-based products are sched-
uled to appear in the second half of 2000. Since last
February, we have released to the Open Source commu-
nity all source code, making Linux/ia64 the first publicly
available operating system for this platform. As of today,

1Check out http://www.linuxia64.org

prototype hardware is available and most of the specifi-
cations of the architecture have been made public. This
allows us to give more technical details about our work.

In previous publications [3, 2], we gave a general
overview of how the project got started and how the first
developments were made using the HP IA-64 instruction
set simulator. In this paper, we quickly review some of
the key system-level features of IA-64. Then, we de-
scribe in detail most of the major machine dependent
subsystems of the kernel like the virtual memory, inter-
ruptions and signal handling. We also explain how the
IA-32 emulation is implemented. In the second part, we
give a status update on the developments at the appli-
cation level. We cover the libraries, development tools,
graphical environments and also Linux distributions. In
the last part, we describe the recently released IA-64
software development kit which allows people with no
IA-64 hardware to develop applications and do kernel
hacking on any Linux/ia32 systems.

2 IA-64 architecture overview

The first implementation of the HP and Intel co-designed
IA-64 architecture, the Itanium processor, has now been
produced and will reach market later this year. It will
be quickly followed by the faster McKinley in 2001.
This new architecture builds upon lessons learned from
VLIW and RISC. It introduces a new paradigm called
EPIC (Explicitely Parallel Instruction-set Computing).
The idea is to expose instruction level parallelism (ILP)
to the compiler and use faster simpler hardware. The
compiler is closer to the source code, i.e., it can get a
better understanding of what the program is trying to
achieve, it has access to more resources in terms of time
and space to help make optimization decisions.

Like VLIW processors, IA-64 groups instructions into
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41 41 541

Figure 1: IA-64 Instruction Format

bundles as shown in Figure 1. Each bundle contains
three instruction slots of 41 bits each and a template
field used to encode which functional units are required
(M-unit for memory access, I-unit for integer operations,
F-unit for floating point, B-unit for branching).

Unlike VLIW, IA-64 allows concurrent execution of
multiple bundles. Groups of instructions that can be ex-
ecuted in parallel are terminated by a stop bit which is
encoded in the template field. Such a stop is required
when you have dependencies between consecutive in-
structions, like in a producer-consumer relationship. The
information required for safe parallel execution is en-
coded in the instruction stream. This yields better porta-
bility across CPUs of the same family. It must be noted
that stop bits can appear in the middle of a bundle.

It has been over a year since the first public specifica-
tions of the architecture [5] have been made public. Ear-
lier this year, the system architecture [7] has been re-
leased and just a couple of weeks ago the microarchi-
tecture specifications [8] for the Itanium processor have
been available. Today, you can get a lot of information
on the architecture from Intel2 and HP3 web sites.

In past publications [3, 2], we have already described
in detail some of the unique features of the architecture.
So here we will only focus on a small subset to help the
reader understand some of the kernel design choices.

2.1 Register sets

This architecture provides a large set of hardware re-
sources to the programmer. A total of 128 integer reg-
isters, also called general registers, of 65 bits each are
available. The 65th bit is used during speculative op-
erations. Integers registers[r32-r127] are called
“stacked registers” and are used with the stack engine
during function calls. You also have 128 floating point
registers of 82 bits each. Because of the large number
of floating point registers, IA-64 splits them in two par-
titions of 32 and 64 registers each called low and high.
Using the processor status register (PSR)dfh anddfl

2Go to http://developer.intel.com/design/ia-64/
3Go to http://www.hp.com/go/ia64

bits it is possible to enable or disable the use of either
partition. A fault would be generated if access occurred
to a disabled partition. This mechanism can be used to
speed up the context switch code as we’ll see later on.

IA-64 also defines a large set of application registers
(AR) which are used to hold state information for the
stack engine, IA-32 emulation, atomic operations and
loop operations. An interesting AR is thear.itc
which is the cycle counter. Whenar.itc is equal to
ar.itm , the interval timer matching register, a “timer”
interrupt is generated. This can be used as a very low
cost interval timer.

There is also a set of eight ARs, called Kernel Regis-
ters (KR) which are writable only at the most privileged
level but readable at any level, they can be used to safely
hold some non sensitive kernel state. Some of the con-
trol registers (CR) are used to change the behavior of the
CPU with regards to fault handling. Others point to sys-
tem wide tables, likecr.iva which points to the OS-
defined interrupt vector table (IVT). The CRs also hold
the state of the machine when an interruption occurs.

IA-64 provides a classical load/store model like RISC
along with up-to-date features like multimedia instruc-
tions. It also introduces some unique features which
we’ll review quickly now.

2.2 Predication

The concept of predication is implemented using 64
predicate registers of 1 bit each. The idea is to avoid as
much as possible branching on conditional statements
by simply prefixing every instruction with a predicate.
When the predicate evaluates totrue the instruction is
executed, otherwise it simply behaves like anop (no
operation). The architecture provides powerful ways
of writing complex if-then-else statement using
predicates and parallel comparisons like shown in Fig-
ure 2. In general the compare instruction,cmp, sets the
first predicate totrue if the test is positive and the sec-
ond predicate to the opposite value, i.e.,false . In the
code shown in Figure 2 both compares are run in par-
allel and they target the same predicates. At first, this
may seem like a conflict but in this case it isn’t because
of the type of test performed. Theor.andcm compari-
son will only write both predicates withp1=false and
p2=true when the result of the test is negative: negates
hypothesis ofp1=true . So if you initialize the predi-
cates correctly, you will get the desired effect of a logical
or operation. If the test succeedsp1 will be true , p2
will be false and we’ll execute the first addition. Oth-
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erwise we’ll run the second addition, indeed performing
the complexif-then-else statement in 3 cycles (in-
cluding initialization), without incurring any branches at
all.

The following C code:

if (r2 == 0 && r3 == 1)
r32 = r33+r35;

else
r32 = r36+r33+1;

gets translated into:

// r0=0 constant zero
// sets p1=true, p2=false
cmp.eq p1,p2=r0,r0;;
cmp.eq.or.andcm p1,p2=r2,r0
cmp.eq.or.andcm p1,p2=r3,1;;

(p1) add r32=r33,r35
(p2) add r32=r36,r33,1

Figure 2: Predication and parallel comparisons

2.3 Speculation

Another unique feature of IA-64 is control and data
speculation. The idea is to provide the compiler with
a mechanism by which it can safely move load instruc-
tions around to accommodate for memory access latency
without having to worry about faults that may occur, like
NULL pointer dereferences or page faults.

Speculative loads are available for both integer and float-
ing point registers. If the load fails, instead of “taking”
the fault, the error is recorded in the NaT bit of in-
teger registers, i.e., the famous 65th bit. For floating
point registers a special value (NatVal ) is used instead.
When the program actually needs the result of the load,
it checks the NaT bit of the register used as the load tar-
get. If it is not set then the speculation was successful
and execution continues. Otherwise, the load can be re-
tried or some recovery code can be invoked.

Control speculation allows the compiler to move a load
before a branch that guards it in a safe manner. Similarly
data speculation allows to move a load, then called ad-
vanced load, before a store that might conflict because
of aliased addresses.

current stack frame (CFM)

outputs

r32

Inputs locals

Inputs

r32

r32 r52r37 r47

outputs

dirty

dirty

5 10

r37

4

r41

br.call function B

B: alloc r37=ar.pfs,5,4,0,0

function A

r37

5

5

5

locals

current stack frame

AR.BSPAR.BSPSTORE

register backing store (RBS)

Figure 3: Register Stack Engine (RSE)

2.4 The stack engine

To avoid unnecessary register spills and fills on function
calls, IA-64 provides a dynamic renaming scheme for
the stacked registers. Each time you enter a new func-
tion you get a “new” set of registers for local and output
variables.

Figure 3 describes what happens when you call from
function A to function B which has 5 arguments. The
top bar shows the current stack frame of function A.
The attributes of the frame are part of the current frame
marker register,CFM. The size of the frame,CFM.sof ,
is 20. The number of “local” registers,CFM.sol , is
15 = 5 input arguments + 10 locals. From this informa-
tion, we can deduce that the maximum number of output
registers needed by function A to call any other func-
tions it uses isCFM.sof-CFM.sol=5 . The rXX no-
tation shows the logical name of registers that the pro-
gram manipulates while the bars represent the physical
registers. You can see that thebr.call triggers the re-
naming based on the number of output registers, in this
case 5. At this pointr32 is the first argument to func-
tion B. Thealloc instruction in function B resizes the
frame to the needs of the function. Obviously it has 5
arguments and here, we added 5 locals. The branch also
causes the frame marker of function A to be copied into
the previous function state registerar.pfs , This is a
preserved register and it must be saved (here inr37 ) and
restored by function B in case it gets modified, like dur-
ing a subsequent function call from B. The registers that
were part of function A’s locals are now inaccessible by
the program (actually been automatically preserved) and
are part of the set of physical registers which contain old
state, i.e., they are “dirty”. When the number of phys-
ical registers is exhausted by the renaming mechanism,
the register stack engine (RSE) does spill the “dirties” to
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a designated memory region, called the register backing
store (RBS). When execution returns from nested calls,
the RSE automatically restores registers from backing
store as needed.

Two registers describe where the stack engine is with re-
gards to spills and fills. Register spills are managed in
a first-in first-out (FIFO) manner. Thear.bspstore
register points to the memory location where the next
register spill will occur (for our example, it is where the
r32 of function A will be saved). Thear.bsp regis-
ter points just above the location where the last register
will be saved (above wherer36 of function A will be
saved), i.e., the top of the backing store. At each func-
tion call,ar.bsp is advanced towards higher addresses
(grows up) to accommodate the new dirty registers. For
optimization purposes, the RSE can be configured to run
in two major modes via an application register called
ar.rsc . In lazy mode, spills will only occur when the
pool of physical registers is exhausted. In eager mode,
the RSE may choose to spill asynchronously from pro-
gram execution. In the current Itanium chip, only the
lazy mode is implemented. It should be noted that the
programmer has the possibility to force a spill opera-
tion explicitely using theflushrs instruction. Sim-
ilarly, the loadrs instruction can be used to force a
RSE reload, i.e fill operation.

Although this mechanism is useful for passing parame-
ters, it does not obviate the need for a real memory stack.
The software calling convention [4] dictates that at most
eight integers registers can be passed by this mecha-
nism, any extra arguments use the memory stack. Up
to eight floating points can be passed in registers ([f8-
f15] ). Everything beyond that uses the memory stack.
Also any local memory storage (large auto variables,
alloca() ), non stacked registers spills/fills require a
real memory stack. Therefore IA-64 applications and
OSes have to deal with two stacks: the memory stack
and the register backing store (RBS).

2.5 System architecture

Last February, the system architecture [7] of IA-64 was
unveiled during the Intel Developers Forum (IDF). This
provides a lot of material to talk about. Here we focus
mostly on the virtual memory and interruptions mecha-
nisms to help understand how the Linux/ia64 kernel has
been designed.

region t

region s

region r

region q

region p

region o

rid=t
rid=s
rid=r

rid=p

rid=n
rid=m

rid=o

rid=q

region registers

2^24 regions

63 60 0

rr0
rr1
rr2
rr3
rr4

rr5
rr6

rr7

virtual address

VRN

region n

region m

2^61 bytes

Figure 4: Virtual address space

2.5.1 Virtual memory

IA-64 provides a flat linear 64 bits address space. The
Translation Lookaside Buffer (TLB) supports different
page sizes (from 4KB to 256MB) and is composed of a
translation cache (TC) and a set of translation registers
(TR) used to pin entries. There are at least 8 instruction
TRs (ITR) and 8 data TRs (DTR). Itanium has 8 ITRs
and 48 DTRs. The size and structure of the TC is imple-
mentation specific, for instance Itanium implements a 2
level data TC (with 32 and 64 entries respectively) and a
single level instruction TC with 96 entries. IA-64 also
supports a Virtual Hash Page Table (VHPT) which is
an extension of the TLB, i.e., a hardware walker, which
looks for mappings in memory. As its name indicates it
is mapped into the virtual address space.

The 64 bits address space is split into 8 regions of
2
61 bytes each. The upper 3 bits of the virtual address

are used to select the virtual region number (VRN) as
shown in Figure 4. Each VRN identifies a region reg-
ister (RR) which contains a224 bits wide unique region
identifier (RID). Thus, at any time, a program can access
up to 8 of the224 possible regions. Those values rep-
resent the architected maximals, Itanium, for instance,
implements:

� 2
54 bytes virtual address space (54=3+51)

� 2
44 bytes physical address space out of2

63 bytes
possible. The 64th bit is used as a memory attribute,
i.e., cached/uncached

� 18 bits for the width of the RID
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Figure 5: TLB lookups

A virtual address is decoded to yield the physical address
as described in Figure 5. Given that multiple page sizes
are supported, the width of the VPN field can vary and is
denoted in the figure by thex symbol. The virtual page
number (VPN) as well as the region identifier (RID) are
hashed and a matching entry is searched in the TLB. If a
match is found and permissions and protections keys are
valid, you get the physical address by concatenating the
physical page number (PPN) with the offset. If a transla-
tion is not found and if the VHPT has been enabled, the
processor looks in the memory structure for a match. If
a match is found it is automatically inserted into the TC.
Otherwise a TLB miss fault is generated and the soft-
ware miss handler is invoked.

Protection keys registers (PKR), just like protection
identifiers (PID) for PA-RISC [10], provide an addi-
tional method to restrict permissions by tagging virtual
pages with a unique identifier. The architecture requires
at least 16 keys and the maximum width is 24 bits. Ita-
nium implements 18 bits. If the executing context pos-
sesses the key and assuming regular permissions are val-
idated, access is granted, otherwise access is rejected. It
is up to the OS to manage those keys.

2.5.2 Interruptions

IA-64 understands four types of interrupts: aborts, inter-
rupts, faults and traps.

Aborts are generated by hardware error machine checks
(MCA) or processor resets and are handled by the pro-
cessor specific firmware layer called PAL [7] (Processor
Abstraction Layer).

Interrupts are asynchronous events generated by I/O de-
vices, platform management interrupts (PMI) or initial-
ization interrupts (INIT). They are handled by an inter-
rupt vector table (IVT) that the OS defines and which is
pointed to by thecr.iva register. To allow for efficient
interrupt processing, this table contains actual code and
not just an indirection. Some entries can have up to 64
bundles and others up to 16. If the interrupt processing is
short, it can be entirely treated inline without any costly
branching outside of the table.

Faults occur when an action cannot be accomplished and
are thus synchronous with the execution. Finally traps
occur when an operation requires software assist, like
some floating point operations or when single stepping.
Both faults and traps are dispatched via the IVT.

Interrupts from devices are called external interrupts.
IA-64 supports up to 256 such interrupts grouped in 16
priority classes of 16 each. To help get efficient interrupt
processing, IA-64 provides the OS programmer with a
set of shadow registers after the interrupt occurred. Reg-
isters[r16-r31] are, in reality, banked registers, i.e.,
you get 2 sets. On interrupt, the processor automatically
switches from bank 1 to bank 0, actually giving you 16
“free” registers.

2.5.3 IA-32 emulation

Although IA-64 is a completely new architecture, it al-
lows IA-32 applications to run unmodified on top of an
IA-64 OS using a hardware assist.

Clearly, the goal is to allow progressive transition of ap-
plications from 32 to 64 bits. In the context of Linux this
is not that big an issue because for most applications,
source code is available and recompilation or adaptation
to 64 bits is possible. But for a small set of applications,
like Netscape Navigator, where only a binary form is
available, it is of high importance to make them run with
no modifications right away.

The processor can be set in two modes of executions,
IA-64 or IA-32. The Instruction Set bit (IS ) of the PSR
indicates the current mode of execution. To switch from
one mode to the other, you first need to setup the cor-
rect register state and then you can use one of the three
switching instructions to toggle the mode. At the user
level, br.ia is used to switch to IA-32 andjmpe to
switch to IA-64. At the kernel level, therfi instruction
can be used to switch to either mode based on the IS bit
of the PSR that is being restored.
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2.5.4 Performance monitors

For IA-64, most of the performance responsibility is on
the compiler. A lot of information can be extracted from
the source but oftentimes, it is necessary to actually run
the program to see how it behaves. Once traces are col-
lected they can usually be fed back into the compiler us-
ing a technique called Profile Based Optimization (PBO)
which most modern optimizing compilers support. The
IA-64 architecture provides a unique set of tools to help
programmers get detailed profile information about the
behavior of a program.

The Performance Monitoring Unit (PMU) offers a set
of registers called Performance Monitoring Data (PMD)
and Configuration (PMC) registers which can be pro-
grammed to capture single or multi-occurrence (per cy-
cle) events. Depending on how you setup the registers,
you can monitor only your application while it’s run-
ning in user mode or only in kernel mode or both. You
can also monitor only the kernel or the entire system.
You can get a complete cycle break down of the pro-
gram. Some counters have thresholding capabilities that
let you count how many times did event A take more
than X cycles. You can restrict the monitoring to spe-
cific piece of code or data. You can also monitor a set of
instructions by specifying a template opcode. Although
cycles accounting gives you a picture of how the pro-
grams behaves, it does not really help you find where
the bottlenecks are. Some of the PMD/PMC are called
Event Address Registers (EAR) and they are used to
record the code location of where some cache or TLB
miss events occurred.

For obvious space reasons we cannot go into more de-
tails about all the other aspects of the architecture but
you can refer to [5, 6, 7] for more information. We have
covered just enough to go into the kernel design descrip-
tion.

3 Kernel internals

The work on the kernel started almost two years ago at
HP Labs using the HP IA-64 instruction set simulator
(ski). The goal of the project was to produce a straight
port of Linux to IA-64. This means that we have tried
to minimize as much as possible changes to the machine
independent part of the kernel. Most of the new code is
located underarch/ia64 andinclude/asm-ia64
directories. We also decided to follow closely the devel-
opment branch of the official kernel, i.e., the 2.3 branch.

Although this may seem like an extra overhead due to
the rapid evolution of this branch, it turned out that, in
the end, it was a win because the final integration into
the mainline went very smoothly. Since February of this
year and as of 2.3.42, most of the IA-64 patch has been
merged into the mainline kernel by Linus. We are con-
stantly tracking the current development (we are at 2.4
today) and update our kernel patch accordingly. A us-
able Linux/ia64 source tree can be found at the official
kernel web site at http://www.kernel.org/4.

In this section we will cover some of the key machine
dependent subsystems of the kernel.

3.1 General properties

Type Size Alignment

char 1 1
short 2 2
int 4 4
float 4 4
long int 8 8
long long int 8 8
void � 8 8
double 8 8
long double 16 16

Table 1: Various data types

The Linux/ia64 kernel has been designed from the be-
ginning as a 64-bit operating system. It uses little-endian
byte ordering model for obvious compatibility reasons
with IA-32. IA-64 can be configured to run in big-endian
as well, so with little extra support, it is conceivable to
have big-endian processes.

Linux/ia64 uses theLP64 data model like all other 64-
bit Unix systems on the market. This means thatlong
and pointer variables are 64 bits whereasint variables
are 32 bits. Table 1 defines the sizes of the various data
types5.

Wherever possible we have tried to follow all the stan-
dards defined for IA-64. This includes the software
calling conventions [4], the application binary inter-
face definition [9] (ABI) and also the Developer In-
terface Guide [1] (DiG64) which establishes a set of
basic system building blocks and defines the required
and optional interfaces between the hardware, firmware
and the OS. By being DIG64 compliant we ensure that

4look into pub/linux/kernel/ports/ia64
5for long double , currentgcc limits size=8, align=8
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Linux/ia64 will run on any hardware that follows the
guidelines.

In order to make porting of existing Linux applications
easier, we have strived to make ABIs compatible with
the Linux/ia32 whenever feasible. For example, we
picked identical numerical values forioctl() com-
mands, signal numbers and error codes, for instance.
This is especially useful for “not so well behaved” ap-
plications which have hardcoded those values.

3.2 Register usage

Name Content

r13 current task pointer
ar.k0 legacy I/O base address
ar.k5 floating pointer high partition owner
ar.k6 physical address of current task structure
ar.k7 physical address of page table

Table 2: Kernel register usage

One of the benefits of having a large number of registers
is that you can dedicate some of them for a single pur-
pose, thus avoiding memory latency to reload the infor-
mation each time it is needed. In the kernel, we decided
to fix the usage of a few registers which point to informa-
tion that is heavily used. The best example is thecur-
rent global variable which points to the currently exe-
cuting process. It is referenced many times throughout
the code. Interestingly enough, one of the general reg-
isters, i.e.,r13 , is also known as the thread pointer, so
we decided to use it to hold thecurrent task pointer.
To tell the compiler not to touch this register, we use the
-ffixed- X option ofgcc , which forbids the usage of
the register specified (X here). Table 2 summarizes cur-
rent fixed register usage. We’ll see later whatar.k5
andar.k7 are used for.

For optimization reasons, we also restrict the kernel
from using some floating point registers ([f10-f15]
andf32-f127] ). Using floating point variables inside
the kernel is never a good idea. However on IA-64, some
integer operations, like multiplication, are performed in
floating registers. For this reason, the rest of low parti-
tion is accessible to the kernel.

3.3 Process subsystem

In the Linux kernel, each process is represented by a
task struct data structure which encapsulates most

struct task_struct

������������
������������
������������

������������
������������
������������

kernel memory stack

alignment gap

2.6KB

2 *PAGE_SIZEn
(32KB)

kernel register backing
store

Figure 6: Thetask struct allocation

of the state. We have seen that IA-64 requires every
process to have 2 stacks, this yields a total of 4 stacks
to deal with between user and kernel mode executions.
When entering the kernel, the memory and register back-
ing store stacks are switched from the user to the ker-
nel pair. To simplify the allocation of the kernel stacks,
we “bundle” them with thetask struct as shown in
Figure 6. The software convention dictates that a mem-
ory stack grows down whereas the backing store grows
up. To detect collision we made them grow towards each
other.

The register context of a process is decomposed into 3
data structures in a typical Linux kernel. The layout of
the each structure is strongly influenced by the calling
convention which defines which registers are scratch,
i.e., saved by caller (free to use directly), versus pre-
served, i.e., must be saved prior to being used. The lay-
out we use is as follows:

1. thestruct pt regs (� 400 bytes), which con-
tains mostly the scratch registers, is saved every
time the kernel is entered (synchronously or asyn-
chronously).

2. theswitch stack (� 500 bytes), which mostly
contains the preserved registers, is only saved when
the process goes to sleep, i.e., there is a context
switch, or during some debug operations.

3. thethread struct (� 1700bytes) contains ad-
ditional state like the debug registers, kernel mem-
ory stack pointer and the high floating point parti-
tion.

Except for thethread struct , which is part of the
task struct , the rest of the state gets saved onto the
kernel memory stack of the process.
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As alluded to earlier, we use a lazy method to save the
floating point state, i.e., we save it only when this be-
comes necessary. This means that the floating point con-
text of a process can still be live in the CPU even though
the process has been switched out. This technique is
used only for the high floating point partition which in-
cludesf32-f127 and represents 1.5KB when saved to
memory. To guarantee that the state is not lost, we sim-
ply disable the high partition by settingPSR.dfh to 1
when a process is switched out. As soon as another pro-
cess needs to access a register in that partition we get a
fault. At this point, we save the state of the original pro-
cess, which task structure is pointed to byar.k5 , into
thread struct . After saving, we change the owner-
ship and re-enable the partition. So unless another pro-
cess requires the partition, no saving occurs. As of today,
we save this partition on every context switch in case of
an SMP kernel. It should be noted that we use a similar
“lazy” technique to save the debug registers.

3.4 System calls

alloc r2=ar.pfs,1,0,8,0
mov r15=1028
break.i 0x100000
cmp.eq p6=-1,r10

(p6) br.cond.spnt __syscall_error
br.ret.sptk.many b0

Figure 7: System call stub

User and kernel mode executions do not happen at the
same privilege level for obvious security reasons. To
enter the kernel for a system call, a process has to go
through a special stub usually found in the C library.
On IA-64, one way to enter is to cause a trap with a
break instruction as shown in Figure 7. On a trap, ex-
ecution continues in the interrupt vector table (IVT) in
thebreak entry. There, the code checks whether or not
this is an actual system call by looking at thebreak
value which, in this case, is0x100000 as defined by
the ABI manual [9]. Registerr15 holds the identifier
for the call: here1028 corresponds toopen() . This
value is an index into the system call table. Once the
function is located, it is simply called. Upon return, we
check for errors and setr10 to be-1 in case of failure.
The error code,errno , is contained inr8 . To restart
execution in user mode, the kernel restores the user state
and eventually executes a return from interrupt (rfi )
instruction.

Systems calls are very often part of the critical path of
an application so we must make sure their invocation is

as lightweight as possible. An important factor is how
parameters are passed between user and kernel mode.
As per the calling convention, parameters are generally
passed in stacked registers. In the case of system calls
however, this is a little bit more difficult because of the
way the call is implemented.
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before switch

task_struct

Kernel address space

User address space

task_struct

after switch

align gap

Figure 8: Stack swicthing during syscall

A break instruction causes a synchronous interruption
of the execution. Thus when we enter the kernel, the
state of the registers is as follows:

� preserved: if the assembly code does not need them
then we have nothing special to do. They will be
saved as needed by the C compiler.

� scratch: we need to save them for tools, like the
debugger, which need to access the process state.
They end up being saved on thept regs structure.

During system call, we must make sure that system in-
tegrity is not compromised by kernel state flowing back
to the user for no reason. Therefore stacks must be
switched. Special care must be taken with scratch regis-
ters as well. Today, because we save them on entry and
restore them on exit, no kernel state transpires. However
in future optimizations we will likely try to avoid saving
scratch registers but we will still need to, at best, clear
them on exit.

Switching the memory stack simply requires changing
the stack pointerr12 . For the register backing store,
it’s a little bit more difficult because it can operate in the
background. Figure 8 depicts what happens when we
switch RBS. You must first stop RSE operations, i.e., put
it in enforced lazy mode, so that it does not try to spill
unless necessary. We pay special attention not to trigger
any request for more stacked registers, i.e., noalloc .
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At this pointar.bsptore needs to be switched to the
kernel backing store (KRBS). This will automatically
causear.bsp to move as well, such that:

ar.bsp=ar.bsptore + ndirties*8

In the equation,ndirties represents the number of
registers (each being 8 bytes long) that were still “live”
from previous stack frames and awaiting to be spilled.
Oncear.bsptore is switched, we can restart RSE op-
erations. In the case of a system call,ar.bspstore
is always switched to point to the next 16-byte aligned
address above thetask struct , i.e the KRBS base,
as we described in the previous section. The memory
stack is switched to point to the top of the 32KB re-
gion, which starts at thetask struct , as it grows
down. The first data structure stored on this stack is the
pt regs . One interesting aspect of this “exercise” is
that some user state may have been saved in the user
backing store while the rest will be saved in the kernel
backing store as execution continues. So upon leaving
the kernel, just before switching back the the user back-
ing store, we make sure that whatever might have been
saved onto the KRBS gets reloaded back into the physi-
cal register set using theloadrs instruction.

During this switching phase, the parameters to the sys-
tem call are completely preserved in the stacked regis-
ters. Once we are ready to call the first C function,
i.e., the actual syscall, we simply need abr.call .
This is very efficient however there is one known prob-
lem: system calls can be restarted. Normal C conven-
tion allows parameters to a function to be modified as
any other local variables. Although this is perfectly fine
for regular functions, this causes some problems on sys-
tem calls because of the restart mechanism. We pass
system calls arguments straight from the user code, we
have no private copy of their values upon entry, so if
they are modified and the kernel needs to restart we
are in trouble. The solution we use is to hint the com-
piler about the nature of certain C functions within the
kernel. All system calls use a special attribute named
syscall linkage . This informs the compiler that
parameters are to be treated as read-only: if a modifica-
tion is required then a copy must be made.

As a future optimization, we plan on using the enter priv-
ilege codeepc instruction. This one is similar to the
B,GATE instruction of PA-RISC. It raises the current
privilege to the one of the page it is placed on (would
be 0 to enter the kernel). The major difference comes
from the fact that the entire system call now looks like a
function call, no more interruption thus more of the con-
text can be assumed as saved by the compiler, i.e., less

work to do on every call. Moreover this instruction does
not generate as much disruption at the microarchitecture
level compared to an interruption.

3.5 Virtual memory

As described in Section 2, the architecture supports dif-
ferent page sizes. The current mainline kernel how-
ever, does not have support for variable page sizes. The
Linux/ia64 kernel supports compile-time configurable
page sizes. It currently supports sizes: 4, 8, 16 or 64KB.
From a programmer’s point of view, this means that any
program relying on knowledge of the page size, must
use thegetpagesize() system call instead of hard-
coding a value. The reason for supporting different page
sizes are as follows:

� if you want to minimize TLB misses, you want
larger page sizes especially knowing the code ex-
pansion factor of IA-64 vs. IA-32. Page sizes of 8
or 16KB are better for native binaries.

� larger page size yields larger address space (see
later).

� 4KB page size is the best for IA-32 emulation.

Reg Usage pg size Scopel Map

7 cached 256MB G I
6 uncached 256MB G I

vmalloc
5 guard 8KB G P

gate
4 stack segment 8KB P P
3 data segment 8KB P P
2 text segment 8KB P P
1 shared memory 8KB P P
0 IA-32 emulation 8KB P P

scope: G=global, P=process; map: I=identity, P=page table

Table 3: Regions usage

The IA-64 architecture splits the virtual address space in
8 regions. Table 3 gives the breakdown per region for
Linux/ia64. The top two regions are for kernel use only.
The cached and uncached regions are identity mapped
and are used to access physical space with a different
caching policy. The kernel code and data reside in region
7. To limit the number of TLB entries consumed by the
kernel we use a large page size and we pin one entry for
data and one for code using translation registers (TR).
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Region 5 is reserved for the kernelvmalloc() alloca-
tor. It also holds the gate page used for signal delivery
and potentially the futureepc code (see section 3.4).
This region being directly above the user regions, it con-
tains a guard page (no access permissions) which is used
to protect against malicious buffer overruns. It also al-
lows to speed up all the routines doing copy from user
mode because it greatly simplifies bounds checking:

1. before copying we simply check whether the start
of the buffer is belowTASK SIZE 6 (base of region
5). If so we start copying

2. Linux uses an exception scheme to copy to/from
user: just do the blind copy and if something goes
wrong, the exception will be generated and execu-
tion will abort with an error code. The guard page
simply ensures that if the first test passes but the
length of the buffer exceeds the boundary then it
will be caught by the exception mechanism even
when running at the most privileged level.

For regions 0 to 5, the page size is taken from the kernel
configuration. Region 5 has its own kernel-wide page
table whereas regions 0 to 4 share the same per pro-
cess page table. Regions 1,2,3,4 are used for IA-64 pro-
cess execution. The stack region contains both the mem-
ory stack and the register backing store growing towards
each other. Finally region 0 is reserved for Linux/ia32
binaries. It is large enough (240 bytes) to encapsulate
the largest IA-32 address space and does not require any
modification to existing programs.

Although each region is261 bytes, Linux cannot take
full advantage of it because of the current design of the
virtual memory subsystem which is based on a 3-level
forward mapping page table. In the following discussion
we assume the page size is set to 8KB.

3 21 7 10 10 13
63 61 60 40 39 33 32 23 22 1312 0

L3 addr

L2 addr

PTE

L3 PT(pte)
dword

page frame

|| L2 PT(pmd)

L1 PT(pgd)

ar.k7

Figure 9: User region page table

In order to use only one page per level each intermedi-
ate level represents only 10 bits of the virtual address,

6TASKSIZE =0xa000000000000000

i.e., how many 8-byte pointers you can fit into an 8KB
page (213�3 = 2

10). Therefore we have a virtual address
space of:230 �213 = 2

43 bytes. Each user region ([0-4])
represents1=8th of the 43 bits space because of a single
page table.

239 bytes

239 bytes

261
b

yt
es

address
space

0x0000000000000000

0x1fffffffffffffff

0x0000007fffffffff

0x1fffff8000000000

unaccessible

Figure 10: User region layout

Figure 9 shows how a user region is broken down in
3 levels. As we mentioned earlier,ar.k7 is pointing
to the base of the page table tree for the current pro-
cess. The top level page table (pgd) offset is constructed
by a logical or of the 3 bits of the virtual region num-
ber (VRN) and bits [33-39]. Bits [40-60] are a signed
extension of bit 39 which creates a software imposed
unaccessible region in the middle of the address space.
This gives the layout depicted in Figure 10 where you
have a large hole where any access would generate a
SIGSEGV.

In contrast, region 5 has its own page table pointed to by
SWAPPERPGADDR, therefore it has access to the full
43 bit address space as depicted in Figure 11. Similarly,
bits [43-60] are a signed extension of bit 42.

3 21 7 10 10 13

L3 addr

L2 addr

PTE

L3 PT(pte)
dword

page frame

L2 PT(pmd)

L1 PT(pgd)

63 61 60 33 32 23 22 1312 043 42

SWAPPER_PG_DIR

5

{

Figure 11: Region 5 page table

In this scheme, increasing the page size actually in-
creases the size of the address space available because
the intermediate levels can store more pointers. Table 4
shows the possible configurations.

In section 2 we introduced the virtual hash page table
(VHPT) which is used by the TLB hardware walker to

10



Page size Address space size (bits)

4KB 39 (512GB)
8KB 43 (8TB)
16KB 47 (128TB)
64KB 55 (32PB)

Table 4: Page size/address space

extend TLB lookups in memory. Linux/ia64 takes ad-
vantage of this feature for regions [0-5]. The VHPT can
be configured in two different modes:

� in the long mode, it behaves like a global hash table
for the entire address space. It is virtually anchored
in one of the eight regions.

� in the short mode, you have one linear page table
per region which typically consists of the leaf level
of the OS-maintained page table. For each region,
the table is anchored into the address space.

In either mode, the table is virtually mapped therefore
an access by the walker requires a TLB entry as well.
The architecture provides separate fault handlers to help
distinguish what is going on. The kernel also makes sure
there is no need for a page table to get the mapping for
the walker page.

For Linux/ia64 we decided to use the short mode be-
cause it is a perfect fit for the way virtual memory is
managed: forward mapping page table. The leaf pages,
i.e., L3 in Figure 9, are installed into the user region to
satisfy a VHPT walker TLB miss. The structure of the
information in L3 PTE has been designed to match ex-
actly the one expected by the walker. One benefit of
this approach is that for every VHPT miss, you actu-
ally make “visible” to the walker 1024 mappings (with
8KB pages) covering about 8MB (1024*8KB) worth of
address space. Thus if the address space is densely pop-
ulated you, indeed, reduce your chances of getting sub-
sequent TLB misses for that area. The downside is that
you may need up to twice as many TLB entries as with
the long mode. Also this mode is less flexible in terms
of variable page sizes per region.

The table must be mapped inside each region. A good
place to put it is where the user has no access, i.e., in the
hole created by the sign extension of bit 39 as depicted
in Figure 12.

As alluded to earlier, there is an architected maximum
virtual address space size of264 where 3 bits come
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unimplemented
address
space

(no user access)
VHPT

space
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Figure 12: VHPT in a user region

from the region number (VRN). Implementations are
free to implement fewer bits but never less 50. The
constantIMPL VA MSBidentifies the most significant
bit of the implemented address space (other than the
VRN), so for Itanium which implements 54 bits, this
value is 50, i.e., 51-1. The architecture defines bits be-
tween [60-IMPL VA MSB+1] to be a sign extension of
IMPL VA MSB. Any other combination would generate
a fault. Just like we “virtually” create a zone of no ac-
cess, this restriction creates yet another one which is
much smaller and represents the “real” unimplemented
area of the virtual address space.

We use the area where bits [51-60] are set to place the
VHPT in each region. This puts the table just above the
unimplemented virtual address space hole. To prevent
any malicious access by the user, the VHPT is mapped
with no access at privilege level 3 (user). Any access
would end up in the process being killed by aSIGSEGV.

In the short mode, each VHPT entry (1entry/page) is ex-
actly 8 bytes, thus the maximum size (with 8KB pages)
of the VHPT is: 240�13+3 = 2

30 bytes. So there is
enough room to fit it above the unimplemented virtual
address space and below the top user accessible region.
The same scheme is used to place the VHPT for region 5.

To take full benefit of the architecture, future changes
potentially include going to a 4 level page table with the
top level used to index regions giving full 43 bits worth
space per region. This requires of course a redesign of
the generic Linux VM subsystem and would need to be
coordinated with all other platforms.
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rfi

rfi
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Kernel

User

}

{

setup_frame()
create sigi/sigc on user stack

cr_iip=trampoline
pt_r3=usr_handler

{

}
restore_sigcontext()

update pt_regs from sgic
cr_iip=sigc−>ipbr.call sys_sigreturn()

pending_signal?

br.call sys_getpid()

getpid()

return from getpid()

usr_handler(n,sigi,sigc)
{}Gate page

trampoline:
mov b6=r3

sigreturn()
br.call b6

to trampoline

Figure 13: Signal handling

3.6 Signal handling

When calling the user handler for a signal, Linux writes
a siginfo andsigcontext structures on the user
stack. It also dynamically generates, on the same stack,
the stub code to call the handler and return back to the
kernel via asigreturn() system call. The, poten-
tially modified,sigcontext is used to update the cur-
rently interrupted context and eventually execution re-
sumes at the user level.

For the Linux/ia64 kernel, the principle remains the
same. The implementation, however, differs slightly
from the above model. We do not generate stub code on
the user stack because it is not very efficient and would
require a cache flush and potentially a TLB miss every
time a signal is delivered. Instead, we chose a, somewhat
more elegant, scheme which uses a code trampoline in-
stalled in the address space of each process.

A sample signal delivery is shown in Figure 13, with
a pending signal detected on return from agetpid()
system call. The first step is to generate the stack frame
needed by the user handler. This task is accomplished
by thesetup frame() function. Both thesiginfo
andsigcontext structures are generated on the user
memory stack, as usual.

Next, instead of generating code, we simply modify
the currentpt regs structure, which contains most of
the information needed to get out of the kernel, to re-
sume execution at the trampoline code. This is accom-
plished by modifying thecr iip field which represents
where the interruption occurred and also where to re-

sume. When leaving the kernel, thecr iip field is
copied back intocr.iip then used byrfi as the re-
sume point.

The trampoline is code installed in the gate page which
is execute-only at the user privilege level. As described
in Section 3.5, this page is anchored in region 5, which
is globally shared. The trampoline code “accepts” three
parameters passed in registers via thept regs : the sig-
nal number, the address of the C handler and where the
siginfo andsigcontext are on the stack.

The first thing this code does is to setup the parame-
ters for the C handler then it does the call. Upon return
it calls thesigreturn() system call and passes the
sigcontext via the user memory stack. Back in the
kernel, thept regs context is updated with the content
of sigcontext then the normal return from system
call code is called and eventually therfi instruction is
executed. Unless theiip field of sigcontext was
modified, execution will resume at the return from the
getpid() system call in our example.

3.7 IA-32 support

Using the code contributed by Intel and VA Linux Sys-
tems, the Linux/ia64 kernel can be configured to run
pure, i.e., no bi-mode processes, Linux/ia32 ELF bi-
naries using theCONFIGIA32 SUPPORToption. Al-
though the CPU is able to run native IA-32 code directly,
some kernel support is needed to load the binaries in
memory and provide the Linux/IA-32 system call API.
We only support IA-32 Linux user mode applications,
you cannot insert an IA-32 kernel module.

Linux/ia64 incorporates two loaders: one for ELF32
(IA-32) binaries and one for ELF64 (IA-64) native bina-
ries. Onexecve() the kernel checks the type of a bi-
nary and dispatches to the correct loader. The file image
is then loaded in memory and the application registers
(AR) pertaining to the IA-32 emulation, likear.eflag
for EFLAGS, are initialized. Eventually the initial thread
is created with the IS (Instruction Set) bit ofcr ipsr
set to 1 inpt regs indicating IA-32 instruction set is
to be used uponrfi .

From now on the process is running in IA-32 mode.
From a user’s point of view it is just a matter of invok-
ing the program at the shell prompt. Dynamically linked
IA-32 binaries are supported. The IA-32 dynamic loader
ld-linux.so.2 is used. To avoid a name conflict,
the IA-64 loader is calledld-linux-ia64.so.1 .
The runtime linker program support for architecture spe-
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% /sbin/ldconfig -p
libc.so.6 (libc6)
=> /usr/ia32-pc-linux/lib/libc.so.6
libc.so.0 (libc6,IA-64)
=> /lib/libc.so.0
libm.so.6 (libc6)
=> /usr/ia32-pc-linux/lib/libm.so.6
libm.so.0 (libc6,IA-64)
=> /lib/libm.so.0
...

Figure 14: Architecture specific libraries

cific shared objects has been enhanced slightly, espe-
cially the search algorithm. Figure 14 shows an ex-
cerpt of the output of theldconfig command where
you can see the distinction between architectures. When
searching forlibm , for instance, the linker, will also
check the architecture to see whether or not it matches
the architecture of the binary. If not, it will continue
searching. The figure also shows that IA-32 libraries are
placed in a different directory than the IA-64 ones. It is
to avoid any name conflicts. The specific location used
is up to the system administrator and is indicated in the
/etc/ld/so.conf file as usual.

During its execution, the IA-32 process is going to make
a system call using the IA-32 software triggered in-
terruption instruction;int 0x80 . At this point the
Linux/ia64 kernel takes over and execution continues
in the IVT in IA-64 mode at the IA-32 Interrupt en-
try. The handler then checks whether or not the in-
terrupt was generated for a system call: was it vector
0x80 ? If that’s the case, the IA-32 system call num-
ber normally inEAXand hosted inr8 is used to index
the IA-32 specific system call table. The IA-32 system
call arguments are “hosted” on IA-64 fixed registers, i.e.,
not stacked. Therefore they must be copied from the
pt regs , where they were saved on entry, to stacked
registers to call IA-64 code. It should be noted that most
of the principles described for IA-64 system calls still
hold here: the stacks are switched.

Because IA-32 and IA-64 Linux implementations use a
different data model, i.e., LP32 versus LP64, each IA-32
system call must be inspected to look for potential dif-
ferences. Problems are only encountered when dealing
with long integers and pointers because their sizes dif-
fer in the two models.

For many system calls there is no impact because there is
either no parameters, like forgetpid() , or the types
of arguments or data structures passed are identical in
both cases.

struct timeval32
{

int tv_sec, tv_usec;
};
struct timeval {

long tv_sec;
long tv_usec;

};
static inline long
put_tv32(struct timeval32 *o,

struct timeval *i)
{

return
!access_ok(VERIFY_WRITE,o,sizeof(*o))

|| (__put_user(i->tv_sec,&o->tv_sec)
| __put_user(i->tv_usec,&o->tv_usec)));

}
asmlinkage long
sys32_gettimeofday(struct timeval32 *tv,

struct timezone *tz)
{

struct timeval ktv;
do_gettimeofday(&ktv);
if (put_tv32(tv, &ktv))

return -EFAULT;
...

}

Figure 15: 32/64 bits conversion

For others, likegettimeofday() a systematic con-
version is needed because the data structure used in each
case is different. In figure 15 we give the example
of gettimeofday() where thetimeval structures
differ: long fields (64bits) must be converted back to
int (32bits).

Finally, some system calls vary depending on the value
of the arguments passed. For example, withioctl()
the type of the third argument depends on the command
type, i.e., the 2nd argument. This requires a case by case
inspection of all possible combinations. Fortunately the
cases where conversions are needed are rare. Our expe-
rience so far seems to verify this hypothesis.

One of the benefits of using region 0 for IA-32 binaries is
that the kernel does not have to worry about 32-bit point-
ers interpreted as 64-bit pointers. Everything is passed in
64-bit registers and the top 32 bits will be zero no matter
what because a load of 4 bytes into an 8-byte registers
will automatically clear the top 4 bytes.

Another design choice we made was to reuse as much as
possible some of the constants used on Linux/ia32. This
is true for ioctl() command code, signal numbers,
errno values. Thus no value conversions are required.
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Another interesting system call ismmap() when the
page size is different from the native IA-32 value of
4KB. For applications which don’t specify a fixed map
address, there is no problem. For others which ask for a
4KB aligned address, themmap() shim code falls back
to doing a copy from the file instead of a pure memory
mapping when the kernel is not using 4KB pages.

So far this code allowed us the run serious IA-32
applications like Netscape Navigator, AcrobatReader,
Applix-5.0, WordPerfect and also some simpler tools
like the IA-32 toolchain.

There are many other aspects of the kernel that would
need to be explained, like how we interact with the plat-
form firmware, how do we boot, how do we figure out
how the machine looks like in terms of devices, etc ? For
space reasons we do not cover these here but all the ker-
nel code is publicly available and is a unique source of
information. Also there is a mailing list available for dis-
cussing Linux/ia64 related topics. All the information to
subscribe is available at http://www.linuxia64.org.

4 User land

The kernel is a key piece of the system but, in reality,
it represents only a small portion of what needs to be
present to get a complete system. In this section, we
give a quick overview of where we are in terms of user
level support: libraries, tools, environments, etc.

4.1 Libraries

Most of the key libraries are available in both static and
shared forms. The current IA-64 libc/libm is based on
GNU libc v2.1. The port of the version 2.2 is in progress.
Some EPIC optimizations are present in the C library
for some performance critical routines, likememcpy() ,
strcpy() , etc. The default math library however is
not optimized at all and uses the generic C code. When
the kernel source got released, Intel contributed an op-
timized version of the math library which provides the
same API. It is entirely written in assembly language and
highly optimized. The pthread support is present in the
currentlibc and is mostly derived from the Java work
going on at HP Labs.

4.2 Development tools

As we mentioned during our introduction to the ar-
chitecture the compiler is the key component when it
comes to exploiting the capabilities of the machine. To-
day everything is based on the GNU compiler that Red
Hat (formely Cygnus) has been working on and which
is based on the early toolchain from HP Labs. This
toolchain is robust enough to compile entire distribu-
tions and Linux kernels. Today, however, it does not yet
support any of the EPIC optimizations like speculation,
software pipelining, etc. It should soon get the support
for predication and the rest is planned. Although it is
lacking those key features, it produces decent code in
terms of density (filling up the bundle correctly) and is
very stable.

A few weeks ago SGI also released in source and binary
forms their IA-64 compiler suite for Linux. It includes
the C, C++ and also Fortran90 compilers. It is GNU
compatible and can therefore be used to recompile most
of the packages used by Linux. The current binary dis-
tribution is meant to be used with the IA64 SDK (see
section 5) and is a cross compiler only at this point in
time.

The other development tools available include the GNU
debuggergdb , strace to get system call traces for
both IA-64 and IA-32 binaries and also the GNU pro-
filer, gprof .

A port of the Performance Counter Library7 (PCL), con-
tributed by IBM, exists and uses some of the capabilities
of the Performance Monitoring Unit (PMU). The kernel
provides thesys perfmonctl() system call to con-
trol how monitoring is done.

For kernel developments, a kernel debugger, contributed
by SGI and Intel, calledkdb is available as a separate
patch to the kernel. It provides assembly level debugging
of a running kernel using the local console or a serial
line. The latest version is available from the HP Labs
FTP site8.

4.3 X11 environment

We are currently using version 3.3.6 of the XFree86
distribution. Work is under way to get the latest 4.0
version working. The GNOME environment, including

7see http://www.fz-juelich.de/zam/PCL
8see ftp://ftp.hpl.hp.com/pub/linux-ia64
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enlightenment andgimp , is available. Other win-
dow managers known to work include,fvwm andWin-
dowMaker to name a few.

We have also successfully been able to get live video dis-
played with thexawtv 9 program. Thevideo4linux
kernel code was used to interface with either a USB web
camera or directly with thebttv driver controlling a
frame grabber card.

4.4 Java

Several Java implementations are available on
Linux/ia32. Fairly direct ports of the Sun Java
Virtual Machine are available from Sun itself and
from blackdown.org . IBM has made available
ports of their Sun-derived virtual machines. Several
less complete open source Java environments, notably
kaffe , are also available. We expect several of these
to be ported to IA-64 by their respective developers.

At HP Labs, we have been focusing on the Java to native
code approach using thegcj compiler. This is a front
end to the GNU compiler which translates Java source
code or bytecode into native code. The Java runtime
environment is recreated using a runtime library, which
includes an interpreter for dynamically loaded code. Al-
though it currently provides incomplete library support,
it offered us an existing IA-64 compiler back-end, the
opportunity to immediately look at Java run-time is-
sues with compiled client code, very competitive perfor-
mance, fast and convenient multi-language support, and
the ability to generate fast-starting native applications.
We expect this may become an important complement
to a traditional Java Virtual Machine.

With cooperation from Red Hat and others, we have
successfully ported the runtime library to Linux/ia64.
The compiler required essentially no porting beyond the
(gcc ) port itself. The IA-64 port is now part of the stan-
dard (libgcj ) distribution. We have since been con-
centrating on enhancing the performance and multipro-
cessor scalability of the garbage collector, both gener-
ally, and on IA-64 specifically.

4.5 Distributions

All the major Linux distributors (Caldera, Red Hat,
SuSe, TurboLinux) are part of the IA-64 Linux project

9see http://me.in-berlin.de/˜kraxel/xawtv.html

and are actively porting their distributions to the IA-64
platform to be ready for product launch.

Today, the TurboLinux and Red Hat “alpha” distribu-
tions are directly available from their respective web
sites. You need real hardware to use them but most of
the packages could be used with the IA64SDK (see sec-
tion 5). Although they are not yet fully complete and
require semi-automatic installation, they all come with
shared libraries, C/C++ development tools, X server, X
desktop components, apache, perl, python, emacs and
also some IA-32 packages.

5 The IA-64 Linux SDK

We recently released an IA-64 software development
kit for Linux/ia32 (IA64SDK). This environment al-
lows developers without IA-64 hardware access to cre-
ate and port user level applications to Linux/ia64 on any
Linux/ia32 systems. In this environment, not only can
users compile applications and generate IA-64 binaries
but they can also run those binaries directly at the shell
prompt. Linux/ia64 kernel developments are also possi-
ble.

This package is based on the NUE (Native User Envi-
ronment) developed at HP Labs during the early phase
of the project when machines were not yet available and
when the system was not yet self-hosted. The idea is to
create an environment as close as possible from what a
user would get on a real Linux/ia64 system. This means
that you get a shell, you can type commands, edit files,
compile programs and run them. The magic is to make
this happen on an IA-32 system of today.

At the core of the package is the HP IA-64 instruction
set simulator, which simulates an IA-64 CPU but not the
entire platform (no BIOS nor PCI). This simulator has
two modes of execution:

� the user mode: allows to run IA-64 applications
directly on top of a Linux/ia32 kernel. The simu-
lation stops at the system call level. Each call is
translated into its Linux/ia32 equivalent. Most of
the time only 32 to 64 bit parameter marshaling is
required.

� the kernel mode: the entire IA-64 CPU is simulated
including virtual memory and interrupts behaviors.
In this mode, it is possible to boot a Linux/ia64 ker-
nel.
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Figure 16: Execution modes

Linux provides a kernel module calledbinfmt misc
which allows one to dynamically bind command inter-
preters to binaries using the magic numbers. When you
combine the batch mode execution of the simulator (run-
ning user mode) with this capability, you, indeed, get
transparent invocations at the shell prompt. With this
mechanism in place one can execute Linux/ia32 and
Linux/ia64 binaries transparently. This provides the ex-
ecution capability.

The other facet of NUE is to hide the cross-development
nature of the platform. The IA-64 compiler must be
called/usr/bin/cc , the linker/usr/bin/ld , the
standard headers files must be in/usr/include , etc.
This makes life so much easier when porting existing
packages. In a typical cross-development environment
those files are usually found in “exotic” places because
they cannot conflict with the native system of the plat-
form. Moreover a lot of fiddling is usually required to
Makefiles to change pathnames. It is even worse
with configure scripts, i.e., autoconf, because here,
not only paths must be changed but also special care is
required for the test programs used: they must capture
IA-64 characteristics not IA-32. Many tests programs
require actual execution to generate results, like a test
for the size of a long integer, for instance.

To alleviate the problem NUE has its own ”shadow”
tree that is installed under/nue . In this tree, you find
mostly Linux/ia32 binaries for tools like editors, net-
work commands, etc. But/nue/usr/bin/cc is a
Linux/ia32 binaries that produces IA-64 code, i.e., it
is a cross-compiler. Under/nue/usr/include you
find the Linux/ia64 headers files, under/nue/lib and
/nue/usr/lib you find IA-64 shared and static li-
braries, etc.

The last piece of magic is to make this look like the na-
tive IA-64 environment by getting rid of the/nue pre-
fix. This is accomplish by simply doing achroot(2)

% /bin/arch
i686
% /usr/bin/nue
% /bin/arch
ia64
% ld -V
GNU ld version 2.9-ia64-000216
(with BFD 2.9-ia64-000216)
Supported emulations:

elf64_ia64
% file /usr/bin/ld
ELF 32-bit LSB executable, Intel 80386,
version 1, dynamically linked, stripped
% cc hello.c -o hello
% file hello
hello: ELF 64-bit LSB executable, IA-64
version 1, dynamically linked
(uses shared libs), not stripped

Figure 17: output of commands in /nue

which is typically called by thenue(1) command to
“enter” the environment. Once in NUE, the system acts
like a Linux/ia64 systems as shown by the few shell
commands in figure 17.

You can simply recompile existing RPM packages us-
ing a simplerpm command as shown in Figure 18 and
unless some porting effort is required, you will get the
equivalent binary RPM automatically.

Source level debugging of user applications is possible
using the simulator explicitly on an IA-64 binary.

# rpm --rebuild mingetty-0.9.4-10.src.rpm
Installing mingetty-0.9.4-10.src.rpm
Building target platforms: ia64
Building for target ia64
Executing: %prep
...

Figure 18: Rebuilding RPMs

Kernel developments are possible using the simulator.
To get a working kernel you need to compile it for the
HP simulator and enable the simulated device drivers
we developed. Basically, you need a simulated se-
rial console (simserial ), a simulated scsi controller
(simscsi ) and, optionally, a simulated Ethernet con-
troller (simeth ) to get full functionality. More details
on how some of those drivers work can be found in [2].
The SDK is shipped with a mini disk image contain-
ing a simplified TurboLinux/ia64 alpha distribution that
can be used to boot the Linux/ia64 kernel. Even though
hardware is now becoming available, we think that hav-
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ing a simulator is very valuable for debugging purposes.
It is extremely useful for debugging very low level code
early on in the development cycle. Figure 19 shows the
simulated serial console at the top and the simulator con-
trol window at the bottom.

Although we have been focusing on Linux development
with this simulator, there is nothing that precludes de-
velopments of other Open Source OSes, like FreeBSD
or NetBSD, for instance.

Figure 19: Booting Linux/ia64

The IA64-SDK is available in Red Hat RPM packages
from the HP software depot web site10.

6 Conclusion

In this paper, we have described some of the IA-64 sys-
tem architecture features and how the Linux/ia64 kernel
has been designed to use them as much as possible. We
explained in details how the key kernel subsystems are
working and the current status of the user mode support.

Since February 2000, as promised by the members of
10see http://software.hp.com/ia64linux

the project, the entire source code for the kernel and
other key components of the system are publicly avail-
able making it the first OS available for this new archi-
tecture. The kernel support has been merged by Linus
into the official mainline kernel.

Although there is still a lot of work to do in terms of per-
formance tuning and debugging, the system is already
very usable. Most of the packages one would expect to
find on a Linux system are present including debuggers,
toolchains and a graphical environment. We will con-
tinue to actively develop the system and expect to use it
as the basis for our system research.

Distributors are working to get full distributions by the
time the product comes to market such that it would be
very easy to bootstrap systems.

Now that all the sources are available, it becomes possi-
ble for anybody to port existing applications or develop
new ones for this platform. Although Itanium prototypes
exist, they are still hard to get. To help foster Open
Source developments, we have released an IA-64 soft-
ware development kit which allows users with no hard-
ware access to get involved with Linux/ia64 today by
simply using their Linux/ia32 machines. This kit allows
user and kernel level developments and is not limited to
Linux.

All the pieces are now available to really jumpstart an
active Linux community around this new platform. Our
effort proves that the Open Source development model
is also possible across the industry and that competitors
can join forces and contribute a major piece of software
back to the community.
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