
Linux Kernel Auditing

Alan Cox

Red Hat



Why Do We Want To Audit Code ?

� All Programmers Make Mistakes

� Programmers rarely see their own errors

� A second viewpoint may see better methods

� Good Practice Changes Over Time

� Hardware assumptions change over time

� Old code needs updating to newer APIs

� Security Auditing

� In some ways a side effect of code auditing



Alan' s First Rule Of Open Source

“Criticism Is Infinitely Scalable”



C Language Traps

� Maths overflow does not cause an exception

� Be very careful to verify the range before multiplying 
or adding to user provided values

� Remember that signed overflow is undefined

� Strings require that space for termination

� Structures can be padded by the compiler

� Use attribute(“packed”) with caution

� Endianness is your problem



Object Lifespan

� For any allocated object can you clearly define

� Where it is created

� Where it is destroyed

� The point at which you know all use of it is finished

� Does the object have a common creation function

� Are all fields initialized at creation

� Slab poisoning

� Are all resources freed on all paths



Portability

� Use u8/u16/u32 for fixed type sizes

� Check endianness in the code

� Use unsigned long for memory and I/O resources

� Otherwise Dave Miller gets annoyed

� Check that ioremap memory is

� Used with readb/writeb and friends

� Not dereferenced directly

� Not used with memcpy/memset



Use of DMA

� Beware of old code using virt_to_bus with DMA

� DMA is not allowed to target

� Vmalloc memory (including module data)

� High pages

� The stack

� When fixing DMA abuse use the new API

� Check DMA always finishes before freeing

� DMA scribbles into free memory are horrible



The PCI Bus

� Update drivers to the PCI hotplug API when 
possible

� Much more important for 2.5

� PCI is message based

� Interrupts and PCI data transfer are asynchronous

� PCI writes may be delayed

� PCI to main memory ordering is not totally obvious

� PCI devices may have 64bit addressing



Resources Are Finite

� System Calls

� Allocates user controlled amounts of memory

� Queues undefined numbers of buffers of user data

� Interrupt Handling

� Make sure CPU time is bounded

� Beware infinite memory allocations

� The Stack

� Typically you have 7K, sometimes 4K for IRQ, 4K 
for system call context.



Deadlocks

� Spin locks are not recursive

� Sleeping with a spinlock held is not permitted

� 2.5 has debugging traps for this

� Copying to/from user space sleeps

� Do not replace long sleeps with mdelay() waits

� Beware of IRQ/system call deadlocks

� You cannot disable_irq holding spinlocks taken by an 
IRQ handler



Termination Order

� Ensure DMA is finished before freeing memory

� Use del_timer_sync to ensure timers are done

� Being careful about deadlocks

� Do not free PCI interrupts until the IRQ is block 
on the card

� Allowing for PCI posting

� Terminate any created threads

� Ensure they are using complete_and_exit



Documentation

� Auditing code requires understanding it

� Document anything that was not documented

� Switch existing documentation to kernel-doc

� Make it clear which release any audit was done for

� If you discover a new common error

� Report it to the kernel list

� Help other people fix the other instances



Submitting Changes

� Seperate functional and stylistic change

� Submit things like reindenting to coding style first

� Try and submit each functional change as a 
seperate patch or changeset

� Makes debugging easier

� Makes understanding changes easier

� Makes rejecting one change of a set easier

� Gets code accepted


