Linux Kernel Auditing




Why Do We Want To Audit Code ?

All Programmers Make Mistakes

Programmersrarely see their own errors
A second viewpoint may see better methods

Good Practice Changes Over Time

Hardware assumptions change over time
Old code needs updating to newer APIs

Security Auditing

In some ways a side effect of code auditing




Alan's First Rule Of Open Source

“Criticism Is Infinitely Scalable”




C Language Traps

Maths overflow does not cause an exception

Be very careful to verify the range before multiplying
or adding to user provided values

Remember that signed overflow is undefined
Strings require that space for termination

Structures can be padded by the compiler
Use attribute(” packed”) with caution
Endianness is your problem




Object Lifespan

~or any allocated object can you clearly define

Where it is created
Where it is destroyed
The point at which you know all use of it isfinished

Does the object have a common creation function
Areall fieldsinitialized at creation

Slab poisoning
Are all resources freed on all paths




Portability

Use u8/ul6/u32 for fixed type sizes
Check endianness in the code

Use unsigned long for memory and /O resources
Otherwise Dave Miller gets annoyed
Check that ioremap memory Is

Used with readb/writeb and friends
Not dereferenced directly
Not used with memcpy/memset




Use of DMA

Beware of old code using virt_to _buswith DMA
DMA isnot allowed to target
Vmalloc memory (including module data)

High pages
The stack

When fixing DMA abuse use the new AP
Check DMA always finishes before freeing

DMA scribbles into free memory are horrible




The PCI Bus

Update drivers to the PCI hotplug APl when
possible

Much more important for 2.5
PCI Is message based

nterrupts and PCl datatransfer are asynchronous
PCI writes may be delayed

PCIl to main memory ordering is not totally obvious

PCI devices may have 64bit addressing




Resources Are Finite

System Calls

Allocates user controlled amounts of memory
Queues undefined numbers of buffers of user data

Interrupt Handling

Make sure CPU time is bounded
Beware infinite memory allocations

The Stack

Typicaly you have 7K, sometimes 4K for IRQ, 4K
for system call context.




Deadlocks

Spin locks are not recursive

Sleeping with a spinlock held is not permitted

2.5 has debugging traps for this
Copying to/from user space sleeps
Do not replace long sleeps with mdelay() walits

Beware of IRQ/system call deadlocks

Y ou cannot disable irg holding spinlocks taken by an
|IRQ handler

\



Termination Order

Ensure DMA isfinished before freeing memory

Use del _timer _sync to ensure timers are done
Being careful about deadlocks

Do not free PCI interrupts until the IRQ is block
on the card

Allowing for PCI posting
Terminate any created threads

Ensure they are using complete and exit




Documentation

Auditing code requires understanding it

Document anything that was not documented

Switch existing documentation to kernel-doc

Make it clear which release any audit was done for
If you discover a new common error

Report it to the kernel list
Help other people fix the other instances




Submitting Changes

Seperate functional and stylistic change
Submit things like reindenting to coding style first

Try and submit each functional change as a
seperate patch or changeset

Makes debugging easier

Makes understanding changes easier
Makes regjecting one change of a set easier
Gets code accepted




