Katie

Geoffrey D. Bennett
NetCraft Australia
glnetcraft.com.au

January 6, 2003

1 Introduction

Katie is an open-source (GPL-licensed) revision control system which has been modelled
on, and intended to be a look-alike of, the proprietary ClearCase Software Configuration
Management System. Simplistically, ClearCase can be thought of as a cross between CVS
and NFS. That is, it provides revision control (as you would expect), but the repository is
presented as a filesystem with a number of interesting features, which will be described in
this paper. The technologies used in Katie, and plans for the future will also be addressed.

2 Concepts

The terminology and concepts used by Katie are rather different to CVS, so for people
familiar with CVS, here is an introduction to the major differences.

2.1 Versioned Object Base

A VOB is a versioned object base, analogous to a CVS repository. Except for the actual
contents of the file versions (which are stored separately), the contents of each VOB are
stored in a PostgreSQL database. In the same way that you would not usually directly
interact with a CVS repository, but rather use commands such as cvs checkout, and
cvs commit, you do not directly interact with a VOB. A daemon (katieserver) handles
requests for access to the VOB from clients.

2.2 Views

A wview is the primary means of accessing a VOB, and is the equivalent of the CVS
workspace that gets created when you run the cvs checkout command. Rather than
creating a local copy of the files in the repository, a Katie view is mounted as a filesystem



in a directory using the katie-mount command. Once a view is mounted, the elements
in the VOB are visible through the newly-mounted filesystem.

In general, each Katie user will have their own view in the same way that each CVS user
would usually have their own workspace.

2.3 Elements

VOBs primarily contain versioned files and directories, which are called elements. Unlike
CVS, directories in Katie are versioned in the same way that files are versioned, which
means that file renames, moves, and deletions are fully supported. For example, a file
deletion would result in a new version of the directory which would contain one less file
than the previous version.

All file elements within a VOB appear as read-only files in a view, and in order to
modify an element, the katie checkout command must first be used. There is no CVS
equivalent to this command, as CVS doesn’t require you to inform it before you start
modifying a file.

2.4 View-private Files and Directories

To support each Katie user having their own private workspace, any new files or directories
that get created within a view using standard Unix utilities are not visible to any other
view. These are called view-private files or directories.

For example, if an element test.c were visible in a view, then running the command
cc -c test.c would presumably result in test.o being created. Until or unless you
actually check test.o into the VOB with the katie mkelem and katie checkin com-
mands (equivalent to cvs add and cvs commit), it will not be visible in any other view.

2.5 Branches

The naming of element versions and branches is done in a tree-like manner. Figure 1
shows a VOB element tree with three directory elements and two file elements. Each
of these elements has its own version tree, and the version tree for one of those ele-
ments (doc/README) is shown. The first version of an element is always named /main/0,
and for file elements is always empty (directory elements would only contain . and ..).
Subsequent versions of elements are named /main/1, /main/2, and so on.

Additional branches on an element can be created using the katie mkbranch com-
mand, but the branch name (known as a branch type) must be predefined with the
katie mkbrtype command.

Figure 1 shows a branch called /main/v1.0. Similarly to the main branch, versions are
numbered starting at 0 (ie. /main/v1.0/0, /main/v1.0/1, and so on).



version tree for the file element /doc/README

/ /main

©

doc src

v1.0
COPYING @ Cz)
()

Figure 1: VOB and Version Trees

2.6 Labels

Katie labels are the same in concept as CVS tags, except that label names (known as
label types) must be predefined using the katie mklbtype command. The predefined
label type LATEST always refers to the latest version of any particular element. It is usual
practice to name labels in all-uppercase, and branches in all-lowercase.

2.7 Configuration Specifications

To determine what particular versions of elements from the VOB get shown in a view,
a short text file called a configuration specification (config spec) is associated with each
view. The current config spec can be seen with the katie catcs command, and edited
with the katie edcs command.

The simplest config spec is the one line element . /main/LATEST which would show
the latest version (on the main branch) of each element, but config specs can be more
complicated and include other branch and label names to select versions, along with
regular expressions to match filenames. The following example config spec would show
in a view the first match of:

the checked-out version of any checked-out element

the latest version on the /main/testing branch of any element within /doc that
has that branch

the version of any *. [ch] element within /src with the V1.0 label

the latest version on the main branch of elements that don’t match any of the above



element . CHECKEDOUT

element ~/doc($|/) /main/testing/LATEST
element “/src/.*\.[ch]$ /main/V1.0
element . /main/LATEST

The equivalent functionality within CVS is the concept of sticky options.

3 Implications of Dynamic Views

Since the view is itself a filesystem, and not a static copy of the files from the repository,
there are a few mostly-obvious implications:

e No additional disk space is consumed by additional views beyond some housekeeping
data and the view-private files that are created within that view.

e [f your config spec selected the latest version of a file, and someone else checked in
a new version of that file, the changes would be immediately visible in your view
(ie. no cvs update equivalent is required).

e katie-mount (the equivalent of cvs checkout) runs in little time (not proportional
to the size of the repository) as it is a mount of a filesystem rather than a copy.

e Changing your config spec (the equivalent of cvs update -r mytag) also takes
little time as it again doesn’t require any files to be copied around.

A less-obvious implication is that by extending the semantics of the filesystem, it is pos-
sible to allow direct access to any version of any element within the VOB using standard
Unix tools. This is done with an extended namespace, where every element within a VOB
has a hidden directory through which its entire version tree is accessible.

The extended namespace is accessed by appending @@ to the end of any element name, so
for the file element doc/README, the path would be doc/README@@. Within that hidden
directory, the version naming described earlier can be used. Therefore, to access the
/main/2 version of doc/README, the path doc/README@Q/main/2 could be used.

Since standard Unix tools can be used to access old versions of files, the equivalent of
cvs diff -r 1.2 -r 1.3 doc/README would be diff doc/README@Q@/main/[23].

Labels can also be used within the extended namespace, so you could see the differences
between two versions with labels V1.0 and V1.1 respectively by using a command such
as diff doc/README@G@/V1.[01].

Slightly more out of the box, a command such as grep regex doc/READMEQ@/main/17
could be used to search versions /main/10 through /main/19 of doc/README for instances
of a particular string.



4 Technologies

4.1 NFS

To develop a native Linux filesystem with the properties previously described would
require significant work, and be beyond the author’s patience. Using NFS as a basis for
Katie’s filesystem seemed to be an obvious choice for a few reasons:

e No kernel code would need to be written.
e As the server would be entirely userland, it would be easily portable.

e As NFS is the Networked File System, Katie views would be accessible across a
LAN without any additional work required.

e The client had already been written.

The initial proof-of-concept for Katie was developed by taking the Linux userland NFS
server and replacing the filesystem-accessing code with database-accessing code. This was
able to demonstrate that dynamic views with their hidden directories could be made to
work, however the performance was hugely lacking due to no caching of database queries
being implemented.

4.2 Perl, SunRPC, and Inline.pm

Katie was then rewritten as a C program, using an embedded Perl interpreter to do most
of the “real” work. The common wisdom that Perl is faster to develop with than C was
immediately obvious, but surprisingly, this version outperformed the pure-C version so
much so that the filesystem now ran at an acceptable speed. The speedup was entirely
due to the ease of putting appropriate caches around the relatively slower database calls.

The major sticking point in converting Katie to a Perl program was the lack of any
SunRPC/XDR library for Perl at the time (SunRPC is the Sun Remote Procedure Call
protocol which NFS uses as its basis; XDR is the Fxternal Data Representation Standard
which SunRPC uses for encoding data). This meant either writing Perl code to talk XDR,
or learning how to call the already-written C SunRPC/XDR handling routines from Perl.

Learning how to call C from Perl seemed to be the easy way out. XS and SWIG were
investigated, but the Perl Inline module seemed to be a good example of the Perl motto
of “making easy things easy”. The below listing shows a complete Perl program using
Inline to link in a C function at runtime.

#!/usr/bin/perl

use Inline C;

print "6 * 9 = ", multiply(6, 9), "\n";
END

C

int multiply(int x, int y) { return x * y; }



By passing additional options to use Inline, the external library required for SunRPC
was also easily linked in. The next step was learning how to translate to and from Perl
arrays, hashes, and references from within C. This required reading perlguts(1) more
than once, along with a bit of trial and error.

The Katie non-filesystem-related RPCs such as checkin and checkout were initially defined
as additional SunRPC functions (on top of the standard NFS ones such as read, write,
lookup, etc.) as this resulted in the easiest initial implementation. It also meant that
every additional RPC (creating a VOB, creating a view, creating an element, checkin,
checkout, and so on) involved writing more XDR definitions and tedious C code to convert
in and out of Perl data structures.

The next implementation replaced SunRPC for non-NFS purposes with the a module
based on PIRPC, a Perl-specific RPC library, unrelated except in name to SunRPC. This
allowed for arbitrary Perl data structures to be passed from client to server and back
again without needing to predeclare the RPC arguments or return values as SunRPC
required.

PIRPC works by using the Storable module to convert an arbitrary Perl data structure
to a string representation which gets transferred over the network. The server side then
converts the string representation back to the original data structure and calls the ap-
propriate function. The return value is similarly encoded into a string by the server and
decoded by the client.

5 Status and Future Work

Katie is still in a pre-alpha state. All the features described so far work very nicely, and
it is capable enough that it is now self-hosting, but there is still much work to do. There
are general issues to deal with such as improving its robustness and rewriting code that
wasn’t intended to last long. The more specific issues include many small “must-have”
features that are necessary for it to be a useful tool (to name two: access control and
importing CVS repositories). There are also a number of more-interesting larger features
that are planned, including replication, attributes, hyperlinks, and katiemake.

5.1 Replication

Due to the use of NFS, the Katie server must be “close” (network-wise) to the client.
A server-server communication protocol needs to be designed and implemented so that
Katie is useful over lower-bandwidth, higher latency networks. The idea is that a Katie
user would run their own server locally, and the local server would maintain at least a
partial copy of the VOB. This would also allow for disconnected operation.

5.2 Attributes

Attributes allow arbitrary data to be assigned to particular elements, branches, or ver-
sions. This could be used, for example, to assign a tested attribute to note whether a



particular version of an element has been tested. Config specs would also support at-
tributes so that you could see in your view the latest version of each file which has the
tested attribute set to True.

5.3 Hyperlinks

Hyperlinks allow relationships between VOB objects (such as element versions) to be
recorded. This would be required to track the history of merges between branches so that
when doing a merge, the most appropriate common ancestor version can be identified.

5.4 katiemake

Another result of using dynamic views is that a make program specific to Katie would be
able to determine what files were read during the build of a target.

By using this information, implicit dependencies (such as #include directives within C
source code) would not need to be listed in a Makefile. For example, if katiemake notices
that gcc -c foo.c results in foo.h being read, it would know that if foo.h changes,
foo.o would need to be rebuilt without specifically being told about the relationship
between foo.o and foo.h.

In a similar way, by tracking what versions of elements went into the build of a particular
file, a developer who repeats the build of an object that another developer has built could
be given the already-built version of the file, which would save time.

6 Conclusion

Katie is not yet suitable for real-world use, but it is steadily progressing, and already
implements some useful features. For further information and to download Katie, see
http://www.netcraft.com.au/geoffrey/katie/.



