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Introduction

IPv6 is a rapidly growing technology

The need for IPv6-Compatible applications is
in demand

Many essential applications (squid, sendmail,
apache) have already been ported

Ideally, everythign wants to be IPv6
Compatible, so we must start now.
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Issues at hand

128 bit addresses (compared to 32bit)

DNS Resolution

IPv4 Fall Back

IP Header Size Dependance

Address dependancies (i.e. 127.0.0.1)
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Implementation Changes

New API calls (inet_pton, inet_ntop,
getnameinfo etc...)

Different paramters (AF_INET6)

IPv6 Protocol handles IPv4
(::ffff:203.134.64.66) and uses IPv4 transport
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API Change Chart

API IPv4 IPv6

Address Conversion inet_addr, inet_ntoa inet_pton()

inet_ntop()

Data Structures AF_INET AF_INET6

in_addr in6_addr

sockaddr_in sockaddr_in6

DNS gethostbyname() getipnodebyname()

gethostbyaddr() getipnodebyaddr

getnameinfo()

getaddrinfo()
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Issues at hand

Handling larger address size

Handling different format address

Resolving new DNS type

Handling IPv4 and IPv6 Simultaneously
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The Client Side
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Step 1: Resolving the name

The preffered function is getaddrinfo()
struct addrinfo hints, *res, *ressave;

bzero(&hints, sizeof(hints));

hints.ai_socktype = SOCK_STREAM;

hints.ai_family = PF_UNSPEC;

getaddrinfo("hostname", "service", &hints, &res);

while (res) {

// process

res = res->ai_next;

}

Writing IPv6 Network Applications – p. 8/15



Determining who we are connecting to

The getnameinfo() function can convert our
resolved address to text
char addr[INET6_ADDRSTRLEN];

getnameinfo(res->ai_addr, res->ai_addrlen, addr, sizeof(addr),

NULL, 0, NI_NUMERICHOST);

Simply printf("Trying %s\n", addr);
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Connecting to the host (Knock. Knock.)

Connect() is used to connect to the remote
host
int sock;

connect(sock, res->ai_addr,res->ai_addrlen);
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Reading and Writing

recv(socket, buffer, maxsize, flags)
char buf[4096];

int recvd;

recvd = recv(sock, buf, sizeof(buf), flags);

buf[recvd] = ’\0’;
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The Server Side
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Finding a listening address

We also use gethostbyname() to find a
listening port
struct addrinfo hints, *res, *ressave;

int n,listenfd;

memset(&hints,0,sizeof(struct addrinfo));

hints.ai_flags = AI_PASSIVE;

hints.ai_family = PF_UNSPEC

hints.ai_socktype = SOCK_STREAM

n = getaddrinfo(NULL, PORT, &hints, &res);

ressave=res;

Writing IPv6 Network Applications – p. 13/15



Binding to an address

while (res) {

listenfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

if (listenfd) {

if (bind(listenfd, res->ai_addr, res->ai_addrlen))

break;

close(listenfd);

}

}

res = res->ai_next;

}
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Questions?

Thanks to:
hs247.com
Abdul Basit

NextGenCollective.net
David Coulson
William Stearns

Grahame Bowland
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