
Writing IPv6 Network
Applications

Trent ’Lathiat’ Lloyd

trent@ztsoftware.net

NextGenCollective.net

Writing IPv6 Network Applications – p. 1/15



Introduction

IPv6 is a rapidly growing technology

The need for IPv6-Compatible applications is
in demand

Many essential applications (squid, sendmail,
apache) have already been ported

Ideally, everythign wants to be IPv6
Compatible, so we must start now.

Writing IPv6 Network Applications – p. 2/15



Issues at hand

128 bit addresses (compared to 32bit)

DNS Resolution

IPv4 Fall Back

IP Header Size Dependance

Address dependancies (i.e. 127.0.0.1)

Writing IPv6 Network Applications – p. 3/15



Implementation Changes

New API calls (inet_pton, inet_ntop,
getnameinfo etc...)

Different paramters (AF_INET6)

IPv6 Protocol handles IPv4
(::ffff:203.134.64.66) and uses IPv4 transport

Writing IPv6 Network Applications – p. 4/15



API Change Chart

API IPv4 IPv6

Address Conversion inet_addr, inet_ntoa inet_pton()

inet_ntop()

Data Structures AF_INET AF_INET6

in_addr in6_addr

sockaddr_in sockaddr_in6

DNS gethostbyname() getipnodebyname()

gethostbyaddr() getipnodebyaddr

getnameinfo()

getaddrinfo()
Writing IPv6 Network Applications – p. 5/15



Issues at hand

Handling larger address size

Handling different format address

Resolving new DNS type

Handling IPv4 and IPv6 Simultaneously

Writing IPv6 Network Applications – p. 6/15



The Client Side

Writing IPv6 Network Applications – p. 7/15



Step 1: Resolving the name

The preffered function is getaddrinfo()
struct addrinfo hints, *res, *ressave;

bzero(&hints, sizeof(hints));

hints.ai_socktype = SOCK_STREAM;

hints.ai_family = PF_UNSPEC;

getaddrinfo("hostname", "service", &hints, &res);

while (res) {

// process

res = res->ai_next;

}

Writing IPv6 Network Applications – p. 8/15



Determining who we are connecting to

The getnameinfo() function can convert our
resolved address to text
char addr[INET6_ADDRSTRLEN];

getnameinfo(res->ai_addr, res->ai_addrlen, addr, sizeof(addr),

NULL, 0, NI_NUMERICHOST);

Simply printf("Trying %s\n", addr);

Writing IPv6 Network Applications – p. 9/15



Connecting to the host (Knock. Knock.)

Connect() is used to connect to the remote
host
int sock;

connect(sock, res->ai_addr,res->ai_addrlen);

Writing IPv6 Network Applications – p. 10/15



Reading and Writing

recv(socket, buffer, maxsize, flags)
char buf[4096];

int recvd;

recvd = recv(sock, buf, sizeof(buf), flags);

buf[recvd] = ’\0’;

Writing IPv6 Network Applications – p. 11/15



The Server Side

Writing IPv6 Network Applications – p. 12/15



Finding a listening address

We also use gethostbyname() to find a
listening port
struct addrinfo hints, *res, *ressave;

int n,listenfd;

memset(&hints,0,sizeof(struct addrinfo));

hints.ai_flags = AI_PASSIVE;

hints.ai_family = PF_UNSPEC

hints.ai_socktype = SOCK_STREAM

n = getaddrinfo(NULL, PORT, &hints, &res);

ressave=res;

Writing IPv6 Network Applications – p. 13/15



Binding to an address

while (res) {

listenfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

if (listenfd) {

if (bind(listenfd, res->ai_addr, res->ai_addrlen))

break;

close(listenfd);

}

}

res = res->ai_next;

}

Writing IPv6 Network Applications – p. 14/15



Questions?

Thanks to:
hs247.com
Abdul Basit

NextGenCollective.net
David Coulson
William Stearns

Grahame Bowland

Writing IPv6 Network Applications – p. 15/15


	Introduction
	Issues at hand
	Implementation Changes
	API Change Chart
	Issues at hand
	Step 1: Resolving the name
	Determining who we are connecting to
	Connecting to the host (Knock. Knock.)
	Reading and Writing
	Finding a listening address
	Binding to an address
	Questions?

