
 

 

ARQuake - Modifications and Hardware for Outdoor Augmented Reality Gaming 
 

Wayne Piekarski and Bruce H. Thomas 
Wearable Computer Laboratory 

School of Computer and Information Science 
University of South Australia 

Mawson Lakes, SA, 5095, Australia 
{wayne, thomas}@cs.unisa.edu.au 

 
 

 

Abstract 
In this paper, the mobile outdoor gaming system 

ARQuake is discussed from an implementation point of 
view. The modifications to the original source code from 
Id Software are described, with a focus on the changes 
made for tracking devices, video overlays, firing 
weapons, and tweaks to the game to improve its visual 
quality. The game runs under GNU/Linux on a standard 
laptop mounted to a custom built backpack, containing a 
variety of equipment necessary to support mobile 
augmented reality. 

1  Introduction 
This paper describes some of the details behind the 

implementation of the ARQuake system, which was first 
presented in [THOM00] and then [PIEK02d]. The 
previously referenced papers only describe the game 
play, while this paper discusses the modifications which 
were made to transform a traditional desktop game for 
use on a mobile outdoor augmented reality system. 

The ARQuake project is based around the Quake 
game engine from Id Software [IDSO01] originally 
released in 1996, and is a first-person perspective shoot-
em up game. In Quake, the player runs around a virtual 
world, shooting at monsters, collecting objects, and 
completing objectives. Quake is desktop based, with the 
user interacting with it using a monitor, keyboard, and 
mouse. Although the game is quite old, the graphics 
engine is very powerful and runs on a wide range of 
computing hardware. With the original Quake engine 
being superseded by newer gaming technology, Id 
Software released the source code for Quake under the 
GNU Public License (GPL). With the availability of 
source code for Quake, it is possible to make extensive 
modifications which are not possible using the game’s 
existing interfaces for developers. By using the Quake 
source code, we can leverage all the features which were 
available in the original game without having to rewrite 
our own game engine from scratch, which is very time 
consuming. 

We took the existing Quake source code, and 
modified it to run on our mobile outdoor backpack 
computer, used for augmented reality research. This 
backpack contains tracking devices, a powerful laptop 
computer, and a head mounted display. With our 

modified Quake game, known as ARQuake, it is possible 
to walk around the real world, and play against virtual 
monsters drawn by the computer, using only the motion 
of the user’s body to control the game. Figure 1 shows 
an example of the game being played outdoors, with 
virtual monsters and objects realistically appearing on 
the physical world’s landscape. 

1.1 What is augmented reality? 
Augmented Reality (AR) is the process of overlaying 

computer-generated images over a user’s view of the real 
world. By using a transparent head mounted display 
(HMD) placed on the head (such as in Figure 2), 
combined with a wearable computer, it is possible for the 
user to walk outdoors and view computer generated 
graphics which appear to exist in the real world. Figure 3 

 
Figure 1 - Various monsters attacking each other and 

the player, with other 3D objects in background 

 
Figure 2 - User wearing a Sony Glasstron head mounted 

display, with attached video camera for AR overlay 

Tinmith 
In Linux Conf Au 2003 - 4th Australian Linux ConferenceJanuary, 2003 - Perth, WA, Australia - Copyright (C) 2003 Linux AustraliaPlease visit http://wearables.unisa.edu.au for more information



 

 

shows a simplified schematic of how augmented reality 
is produced by combining images from the real world 
with computer generated graphics. 

There is a wide range of research (in both technology 
and applications) currently being performed by the AR 
community, and this is discussed in two extensive survey 
papers by Azuma [AZUM97a], [AZUM01]. 

1.2 Requirements 
To write applications which use mobile outdoor 

augmented reality technology, there are a number of 
hardware and software components which are required. 
Since the application does not run on a traditional 
desktop computer with mouse, keyboard, and monitor, 
designers must rethink the interface between the user and 
the application. For the ARQuake game, we require: 

• A mobile computer which can be carried by the user, 
with enough processing power to generate the 3D 
graphics in real time. 

• A suitable head mounted display which the user 
looks through to see the computer generated 
graphics. 

• Tracking devices which can measure the position and 
orientation of the user’s head (and possibly the hands 
and arms as well) so the computer can accurately 
generate graphics to overlay the physical world. 

• An input device to allow the user to control the game, 
shooting at monsters, changing weapons, reloading 
levels, etc. 

• A software application which interfaces with the 
hardware devices, and provides augmented reality 3D 
overlay using optical or video methods. 

2  Hardware 
As part of our research, we have developed a number 

of backpack computers over the last 5 years which are 
used for mobile outdoor augmented reality. These 
backpacks have been designed to support research into 
developing new user interfaces for interacting with 
augmented reality computers that do not have traditional 
desktop input devices, with applications such as the 
Tinmith-Metro outdoor modelling system [PIEK01b]. 

While these backpacks have a number of legitimate 
research uses, with the addition of a small plastic gun 
prop, the modular backpack can be transformed into one 
of the world’s most expensive gaming systems, and 
capable of taking Quake into the real world, allowing 
users to play against monsters that appear to really exist. 

The current backpack design we use is known as 
Tinmith-Endeavour, and was designed in cooperation 
with the Defence Science Technology Organisation (see 
Figure 4 and Figure 5). This backpack is based on a 
polycarbonate plastic shell, which houses the various 
components that the user must carry outdoors. The 
polycarbonate shell has hundreds of drilled holes, which 
allow the rigid attachment of devices and cables to the 
backpack using cable ties and Velcro. In this section we 
will describe all the components that the user carries 
outside. 

For a head mounted display, a Sony Glasstron PLM-
700e with 800x600 SVGA resolution is used. This 
display is one of the highest quality ever produced, and 
contains a half silvered mirror to overlay images with the 
real world. At the time of purchase it cost A$6000 but 
unfortunately Sony have stopped producing this display 
due to lack of demand. Since the display is not 
replaceable and demonstrations tend to damage 
hardware, we demonstrate the system using other lower 
quality displays. For these demos, we use I-Glasses, 
which have low resolution LCD displays and PAL TV 
resolution inputs, with a cost of less than A$1000. These 
displays also have a half silvered mirror to overlay 
images with the real world. Unfortunately, there seems 
to be a general trend in the industry to stop making 
transparent HMDs, and these devices are no longer 
available either. Currently, the displays which are 
available for purchase are not transparent, and require 
the computer to overlay the image in software rather 
than using a mirror, and this will be discussed later. 

 

Combiner 

Real World 

Display 
Computer Generated Image 

 
Figure 3 - Schematic showing generic implementation 

of an augmented reality head mounted display 

 
Figure 4 - Front view of the Tinmith-Endeavour mobile 

backpack, with gun extension for ARQuake 



 

 

For the computer to know where the user is standing, 
we use the Global Positioning System which is capable 
of providing this information almost anywhere in the 
world. To get better accuracy than is possible using 
standard GPS receivers (5 metres), we use a Trimble 
Ag132 GPS, which uses differential correction signals as 
well as advanced signal processing to improve accuracy 
to 50 centimetres. This unit costs around A$8000, and 
even further improved accuracy can be gained using 
Real Time Kinematic GPS units (1-2 centimetres), 
although the costs for these range from about A$50,000 
upwards. 

In order for the computer to render the correct part of 
the world for the user, information about the orientation 
of the user’s head is also required. We use an Intersense 
IS-300, which is a hybrid sensor combining 
magnetometers (magnetic compass), accelerometers (tilt 
sensors), and solid state gyroscopes to produce fast 
updates which are much more accurate than a standard 
sensor without gyroscopes. This device costs around 
A$4000 to purchase, but unfortunately its accuracy 
suffers when exposed to magnetic distortion caused by 
external objects as well as the backpack itself. The best 
tracking is possible using a fibre optic gyroscope, which 
fires lasers around coils of fibre optic cable and 
measures the phase difference caused by the motion of 
the user. While incredibly accurate with drift only 
occurring after many hours and immune to outside 
interference, this device costs around A$100,000 and is 
currently too expensive for our budget. 

For video input, we use a special 1394 Firewire 
camera known as a Firefly. This camera is capable of 
generating 640x480 video at 15 fps in raw RGB format 
to the host machine, ready for processing or display 
without any decompression required in software. The 
main advantage of this camera is that it is incredibly 
small, so it can be easily mounted onto a HMD without 

causing weight or size problems. This camera costs 
about A$1000, and we have also used other cheaper 
cameras which have slightly lower image quality and 
have a larger form factor. 

For a processor, the backpack currently uses a Dell 
Inspiron 8100 laptop, which has a Pentium-III processor 
at 1.2 GHz, and an NVidia GeForce 2 graphics chipset. 
This laptop runs the GNU/Linux operating system 
(currently RedHat 7.3 with kernel 2.4.17), and uses the 
NVidia OpenGL 3D drivers to perform direct hardware 
rendering. The graphics chipset is also the first which is 
powerful enough to take live video streams, load them 
into texture memory, and display the video as a texture 
on arbitrary polygons in real time. 

The backpack also carries a number of other devices 
for interfacing all the hardware, such as multiple USB 
hubs, a 1394 Firewire hub, and a Keyspan RS-232 to 
USB converter. The system operates for 2 hours with a 
12V battery rated at 85 Wh, and weighs approximately 
16 kg. We implemented Tinmith-Endeavour with as 
many off-the-shelf components as possible, and no effort 
has been made to miniaturise or lighten the design 
through custom built components 

3  Software modifications 
This section discusses the modifications which were 

made to the original Id Software version of Quake, to 
produce the ARQuake game discussed in this paper. 

3.1 Tracking 
The Quake game (as well as most other desktop 

based games) is controlled using the keyboard and 
mouse, with a monitor used for the display. The user 
specifies where they would like the game to move by 
pressing the arrow keys or steering the user with the 
mouse. This operation is relative because the movement 
is relative to the previous position and orientation of the 
user. Internally however, the game stores 3D position 
(X, Y, Z) and orientation (heading, pitch, roll) in 
variables, and these are stored as absolute values relative 
to the origin of the game universe. When the keyboard or 
mouse is used to control the game, relative offsets are 
applied to these values. By taking control of the game 
and modifying these values ourselves, it is possible to 
use the outputs from the GPS and IS-300 to control the 
game movements instead, making the game fully 
controlled by the body. 

To perform this, software must be written to parse 
the RS-232 output of these devices, and deliver them to 
the Quake game engine. For this task, we use the 
Tinmith-evo5 software architecture [PIEK02a] which 
contains drivers for all the hardware on the backpack, 
and abstracts them to generic object types. These updates 
are then serialised to a string and sent by the driver 
process to the Quake game as UDP packets. It should be 
noted that there are a number of freely available software 
systems which provide drivers for many 3D devices,  

Figure 5 - Rear view of the Tinmith-Endeavour mobile 
backpack, with gun extension for ARQuake 



 

 

some popular ones are VRPN [VRPN02], OpenTracker 
[OTRK02], and VR Juggler [VRJG02]. 

Inside the Quake game, as part of the display refresh 
loop, the incoming UDP socket is checked for update 
packets, which then deserialises the contents. These 
values are then copied into Quake’s global position and 
orientation values, and when the 3D scene is rendered it 
will be using the values from the hardware devices. 

With these changes to the processing loop, it is still 
possible to control the game using the keyboard or 
mouse, as this code is not modified. However, any 
movements made with these inputs will be overwritten 
when the next UDP packet arrives if the driver process is 
running. If hardware changes are made to the backpack, 
then only the driver process needs to be changed as the 
game modifications are implemented generically. 

3.2 Actions 
While the rendering of the game is controlled using 

the position and orientation of the user’s head, to interact 
with the game we have developed a number of plastic 
guns with buttons linked up to the computer. When the 
user presses the trigger, the gun in the game shoots, 
making this a very intuitive input device to use. 

Rather than making moulds and trying to create our 
own plastic guns from scratch, it is much cheaper and 
easier to go to a toy store and purchase them already pre-
fabricated. Many of these toys contain internals that can 

easily be removed, and replaced with electronics to 
perform whatever task is required. 

The first gun design (built in 2000) is shown in 
Figure 6, and contains a solenoid which electrically rams 
a bolt against the gun to give the user haptic feedback 
whenever it is fired. A controller box is used to process 
the trigger and two other buttons, and also to apply the 
correct voltage to the solenoid to simulate the different 
weapons available in Quake. The controller is relatively 
simple and uses a parallel port interface, with the haptic 
feedback controlled by the computer. In practice, we 
found that the power consumption of the gun was 
excessive, as the solenoid uses large amounts of current. 
Also, the parallel port interface requires special 
privileges to run, and is timing critical since it uses bit 
banging to communicate to the controller. A more 
efficient interface would be to use a microcontroller in 
the gun and RS-232 or USB. When in use outdoors, we 
also found that the gun looked too realistic, and could 
potentially cause problems with bystanders and security 
guards unaware of the technology. 

To simplify things as much as possible, we have 
recently developed a much smaller and easier to use gun, 
show in Figure 7. This gun is a small toy originally 
designed to blow bubbles, and is painted in a friendly 
bright yellow colour, looking more like a hair dryer than 
a weapon. We commonly refer to this device as the 
‘duck gun’, and it causes fewer problems with security 
when shown in the public. After having its internals 
removed, we embedded the electronics from a broken 
USB mouse, wiring each of its three buttons to a switch 
on the trigger, and two others on the side. It plugs into 
the computer with a standard USB connector, and 
requires no software modifications to use since it appears 
as a standard mouse to Quake. Although it has no haptic 
feedback like the other gun, this design interfaces 
directly with most software, and has negligible current 
draw and no external controller box. 

It should be noted that neither gun design contains a 
tracking device, and is simply a collection of buttons 
embedded into a plastic object. The firing aim of the user 
in the game cannot be controlled by moving the gun, and 
is controlled using the motion of the user’s head, as is 
done in the desktop game. Quake always fires weapons 
to the crosshair in the centre of the display, and would 
require major changes to the game to allow an 
individually steerable cursor, as well as adding hardware 
to track the location of the gun. 

 
Figure 6 - Haptic feedback gun, embedded into futuristic 

looking children’s laser gun toy (controller not shown) 

 
Figure 7 - USB mouse embedded into a children’s 

bubble blowing toy, with switch and button attachments

Optical 
Combiner 

Real World 
Display 

Virtual 
World

Generated 
Graphics Computer 

 
Figure 8 - Schematic of optical based augmented reality



 

 

3.3 Optical overlay 
In most cases, the easiest way to perform augmented 

reality is to use a technique known as AR optical 
overlay. This technique was developed by Sutherland 
[SUTH68] in 1968, and was used to produce a very 
primitive augmented reality demonstration. 

This display, along with more modern equivalents, is 
implemented using an optical combiner, as shown in the 
schematic in Figure 8. Computer generated images are 
sent to small displays worn by the user, which are then 
focused and aimed using lenses and mirrors, and 
combine the images with the real world using a half-
silvered mirror. 

The images in Figure 9 and Figure 10 show examples 
where the ARQuake game overlays the real world using 
optical combining. To make the images combine 
properly, the computer generates the image with black 
pixels where it wants the user to see the real world, and 
colours in pixels where it wants to show an object. For 
the example figures, the levels were modified so that 
where we want the user to see the real world, we use 
black textures. 

This technique is simple to implement because the 
computer simply draws black when it wants to let in real 
world light, and requires no software modifications to 
operate, except for changes to the game levels. However, 
the optical combiner darkens the entire world like a pair 
of sunglasses, and overlaid images look ghosted because 
the real and virtual worlds are always both visible. Also, 
taking pictures of the game in action with video or still 
cameras is difficult through a HMD, and it is not 
possible for bystanders to see what the user with the 
HMD is experiencing. 

This technique was used in the original ARQuake 
system in 2000, as mobile computers were only fast 
enough to run Quake with low resolutions, and hardware 
3D acceleration was not available. The next technique, 
known as video overlay, overcomes many of the 
problems with this technique, but requires much more 
powerful processing to implement properly. 

3.4 Video AR 
Instead of using an optical combiner, which produces 

images that are ghosted and difficult to show to others, a 
technique known as video overlay is possible. This 
method uses a video camera to view the world, and the 
frames from the camera are combined with the rendering 
of the 3D graphics inside the computer, and the final 
display is shown to the user, as outlined in Figure 11. 
For this method, the HMD is completely opaque, and the 
user cannot see through it except with the video camera. 
Now that recent mobile computers are powerful enough 
to perform video overlay, and also that transparent 
HMDs are harder to find, we have switched to this 
technique for most of our research. 

This technique produces excellent quality output 
limited only by the camera and display, and is easy to 

demonstrate in large groups because the complete AR 
output can be seen on the laptop screen on the backpack. 
Game sessions can be recorded to tape with a video 
recorder, without having to clumsily hold a camera 
inside a HMD for filming. 

The implementation of this technique is more 
involved than the optical case, since the computer now 
needs to perform the overlay in software. In the Tinmith-
Metro application [PIEK01b] we implemented a texture 
mapped polygon with the incoming video stream 
mapped to it in real time. This polygon is attached to the 
user’s head motion so that no matter what direction they 
look in, it is always visible. Figure 12 shows how this 
polygon is linked up to the avatar of the user. When in 
immersive augmented reality mode, the display appears 
as in Figure 13, showing the system overlaying 3D 
cursors over the hands in the real world. The only 
problem with this set up is that if the polygon is placed 2 
metres away from the user’s head, any objects which are 

 
Figure 9 - Optical based ARQuake showing monster, 

health box, and partial grid lines on building walls 

 
Figure 10 - Optical based ARQuake showing monster 

standing on walkway near building 

 

Display 

Real World 

Generated 
Graphics 

Computer 

Virtual 
World

Camera 

 
Figure 11 - Schematic of video based augmented reality 



 

 

further away will be occluded by the video polygon. To 
prevent this, we scale all the dimensions for the video 
texture by an arbitrarily large number, say 10000, and so 
the polygon which was once 1m x 1m at a distance of 
2m is now 10km x 10km and 20km away! By 
performing this scaling operation, any objects within 20 
km of the user will not be occluded by the video display, 
which is adequate for the task. This projection technique 
can be thought of as a large drive-in theatre screen or 
IMAX theatre attached to your head and displaying an 
image at all times. 

Performing this same rendering technique in Quake 
is not as simple however. Quake is highly optimised for 
speed, and so does not clear the background on the 
assumption that every pixel will be redrawn because all 
levels must fully enclose the user with no external holes 
showing the empty void surrounding the game. Having a 
projection screen at a large distance does not work 
because it will be outside the current room the user is in, 
and therefore not visible (Tinmith-Metro allows the user 
to see empty space, and so the video projection works). 

In the original optical ARQuake, textures containing 
black pixels were used where we wanted the user to see 
the real world. With a video overlay system, black pixels 
will overwrite any video projection, and so some extra 
effort is required for the overlay. OpenGL has a number 
of functions for drawing images and textures using 
Boolean operators and special functions, which would 
allow the replacement of all pixels of a certain colour 
with the video overlay. However, these functions are 
emulated in software with most drivers as they are not 

supported in hardware and very rarely used. The trick is 
to use a technique which is supported in hardware to 
gain maximum speed and avoid stalling the 3D pipeline. 

After much experimenting, OpenGL stencil buffers 
were the only way we found to implement video overlay 
using hardware acceleration. An interesting thing to note 
is that the TNT2 and GeForce2 implement stencil buffers 
differently using hardware at some colour bit depths, and 

 
Figure 12 - External view of Tinmith software showing 

relationship between user’s head, projection video, and 
3D objects (video display is normally further away) 

 
Figure 13 - Immersive Tinmith screen shot showing 3D 

cursor objects appearing to be floating over video image

 
Figure 14 - Monster falls over when shot at by the player

 
Figure 15 - Various monsters attacking after being 

released by the opening of a door 

 
Figure 16 - Monsters shoot at each other while player 
attacks, yellow gun is seen at the bottom of the display

 
Figure 17 - Close up view showing the outcome of a 
virtual battle, with monsters overlaid onto the ground 



 

 

using emulation at other depths, so it is important to test 
this carefully. We initialise the stencil buffer to all zeros 
at the start of each frame, and during normal draw 
operations we write zeros. In code that draws texture 
mapped polygons, we put in a small test which checks 
for a texture named ‘black’. When this texture is used, 
we set the stencil draw value to one and so any pixels 
drawn to the display for this triangle (that pass the 
normal Z-buffer tests) will set the stencil buffer to one at 
these points. After the completion of the Quake render 
operation, a polygon using the video texture and filling 
the entire display is drawn, but with an extra test 
function that only allows drawing where the stencil 
buffer is set to one. The result is that all pixels drawn 
with the ‘black’ texture are replaced with video, but we 
don’t replace actual black coloured pixels contained in 
other textures, so it is still possible to have objects which 
contain black pixels. This technique is used to render the 
outdoor action images in Figure 14, Figure 15, Figure 16 
and Figure 17, and the quality of these images is 
excellent with vivid colours and sharp edges. 

3.5 Miscellaneous 
While the previous sections covered the major 

changes which were required to make ARQuake work in 
an outdoor environment, there are a number of other 
tweaks which were made to improve game play and the 
quality of the output for the user. Some of these tweaks 
were made by modifying configuration files, and others 
were made by directly editing the source code. 

With the use of head mounted displays, it is 
important that Quake is configured to use the same field 
of view (FOV) as the display being used, otherwise the 
objects will not overlay correctly. Normally, Quake runs 
with a FOV of around 70-90 degrees, whereas a typical 
HMD is 20-30 degrees. At this FOV however, Quake 
does not render the gun properly and the user cannot tell 
what gun they are using. To correct this, the code which 
places the gun relative to the user was modified to use 
variables, and it can be dynamically repositioned as the 
FOV varies. 

Since Quake is meant to be played on a desktop, the 
user needs feedback so they know when they are being 
hit, and large weapons cause recoil. When playing 
ARQuake, it does not make sense for the game to recoil 
or move because it is under the control of the tracking 
devices. This movement is distracting to the user 
because the entire game jolts before being corrected by 
the 3D trackers, but the video remains motionless, and is 
confusing since the overlay illusion is broken. The code 
which implements this feature has been disabled to keep 
the game stable and under the full control of the trackers. 

Quake is normally a very dark and gloomy game, and 
many levels use this to increase the sense of presence, 
but this makes the level very hard to see on a HMD, 
especially when working outdoors under bright sunlight. 
A number of settings in Quake which control the lighting 
have been modified so they are at full brightness, 
producing the most saturated displays possible and 

reducing the dark and gloomy effect somewhat. Effects 
such as lighting generated by the motion of the user, 
rockets, and explosions, as well as colouring changes to 
indicate invincibility and bio-suit mode have been 
disabled because they are incompatible with the 
rendering technique used for the video overlay. 

With the use of the plastic gun as the input device, 
many users initially incorrectly thought that by aiming 
this gun it would control where the bullets would fly. To 
help convey this better, a large crosshair was placed in 
the centre of the display making it more obvious that this 
is where the user is aiming at. 

To help with the debugging of the game, and to 
monitor its operation when in use outdoors (considering 
that the hardware can often cause problems) we also add 
extra position and orientation information to the status 
bar at the bottom, which is available at all times instead 
of having to use the Quake console. 

When demonstrating the game to people not familiar 
with the system it takes a short amount of time to get 
used to and so for these cases, we modify the start up of 
the levels to give the user lots of weapons and 
invincibility. This makes it easier for the user to start 
playing straight away and not worry too much about 
being hit by the monsters and trying to find items. When 
the accuracy of the GPS tracker is poor (due to bad 
satellite coverage) it can sometimes be difficult to walk 
around accurately and pick up objects, and so this makes 
the game easier to play straight away. 

One interesting side effect of the modifications to the 
Quake source code is that multiplayer support is 
included automatically. Using wireless network 
adaptors, it is possible to have people outdoors playing 
against other mobile computers, as well as users with the 
standard desktop Quake indoors. In most scenarios 
though, the user on the desktop machine will usually win 
because a mouse and keyboard allows much faster 
running and turning than is possible in the physical 
world, especially when carrying heavy and fragile 
computing equipment. 

4  Level and character design 
Since ARQuake is based on the same source code as 

Quake, we use the standard Quake mapping tools such as 
WorldCraft to design and edit levels. Any existing maps 
for Quake can be used straight away, but in most cases 
should be modified to take advantage of the AR overlay 
and to make it as playable as possible. 

For objects that are required to be transparent, so that 
the video overlay will work, the textures must be set to 
the internal name ‘black’ so that the code modifications 
discussed earlier can do the stencil buffer overlay. To 
walk around in what appears to be an open environment, 
a large room should be created using the ‘black’ texture 
for all walls, floor, and roof. While it is possible to leave 
the level fully textured without video overlay, this is not 
really augmented reality because the real world is not 



 

 

visible - it is more of a mobile virtual reality system 
instead. 

Objects should be as brightly lit as possible, because 
when played outside everything else is bright, and so it 
does not make sense to have dark objects and shadows 
during the middle of the day. When using a HMD, 
colours tend to wash out when sunlight gets in on the 
sides of the display, and so bright colours which are 
saturated produce the easiest to see output. The 
characters used in Quake are also quite dark, and so the 
skins for these were recoloured to make them as visible 
as possible, an example conversion is shown in Figure 
18 and Figure 19. 

When designing levels, it is important to select 
monsters that are not too powerful for the user to fight 
against. Since the user must physically move their body 
to play the game, it is not possible to dodge bullets and 
perform other rapid operations that would normally be 
expected. For most of our levels, we select monsters that 
are reasonably slow and not too powerful so the user has 
a chance to play the game without being overwhelmed. 

For cases when there is no GPS tracking (such as 
when demonstrating indoors) the game still works, but 
the user cannot move from the starting position. For 
these cases, we have developed special levels which 
have all the monsters accessible from the start position, 
and weapons are given to the user so they do not have to 
walk around and pick them up. Having these special 
levels is important also for debugging as all development 
is done indoors, and only when the software is fully 
tested is it taken outside to be trialled. 

5  Limitations 
Quake is a game which was optimised to run on 

desktop platforms, and to use certain tricks to improve 
the quality of the display and the frame rate by 
sacrificing certain features. These optimisations limit the 
changes that can be made when modifying the source 
code (without a major rewrite) and make some changes 
more difficult than others (for example, the video 
overlay). While Quake was never designed to be used for 
outdoor augmented reality, the fact that we have been 
able to change a game written so many years ago quite 
easily is a tribute to its excellent design. 

Currently we have reached the limits of what the 
Quake engine is capable of doing for us, as other 
features we desire are not possible to implement without 
major changes: 

• As mentioned previously, the gun cannot be aimed 
independently since Quake assumes that the user 
steers the gun and the head with the same input 
device. 

• The video overlay has some glitches due to the use of 
the stencil buffer, and there are cases where objects 
are not occluded correctly although these are rare and 
hard to spot. 

• The camera model of Quake is confusing, with it 
being tricky to measure the scaling factors used when 
rendering maps to ensure that the display accurately 
matches the real world - we have managed to get 
everything to register properly but it was a trial and 
error approach. Quake is designed to render 
approximate models that look good for the user, but 
not necessarily accurate. 

• Actions such as laying down or looking around 
corners (without exposing the body) are not possible, 
because Quake assumes a rigid body which is always 
standing upright. 

• Quake uses an optimised model format which is 
different than the traditional VRML, 3DS, and DXF 
files used for modelling. Converting to and from 
Quake’s format is difficult, and requires a human to 
manually intervene at certain stages. 

It should be realised that most first person 
perspective shooter games have the same limitations as 
Quake, and implement features which are similar since 
they are designed to be played on desktop machines. 
Although they may have rendering engines which are 
many years newer and more up to date, most of these 
newer features are useless for an AR conversion because 
one of the main changes we make is to disable lighting 
and shading effects to improve the visibility of the 
display. Another disadvantage to newer games is that the 
AI for the characters tends to be a lot smarter than 
previously, which means that the user (who is already at 
a disadvantage by being limited to physical movement 
constraints) will have an even harder time beating 
computer generated monsters that are already difficult. 
Most importantly of all, the source code must be 
available in order to make the changes necessary, as they 
require access to the internals of the renderer which is 
not possible using standard extension mechanisms. 

Rather than trying to extend existing games to 
support AR, we are now exploring modifications to our 
current AR software Tinmith-Metro [PIEK01b] to 
support playing games. This application currently 
supports a wide range of modelling tasks, and is capable 
of handling the rendering of entities in a number of file 

 
Figure 18 - Original Quake 

character with dark and 
gloomy textures 

 
Figure 19 - Quake character 
using modified colour maps 

to improve visibility 



 

 

formats very easily. By integrating in the plastic gun it 
will be possible to support Quake-like functionality but 
with extra features not previously possible. 

Finally, it should be realised that some concepts from 
Quake will never be possible when playing ARQuake, 
because these actions are impossible in the real world. 
Actions such as jumping large distances (which would 
break the backpack), flying, and swimming, are not 
possible without extra extensions to the backpack such 
as a jet pack and breathing apparatus. 

6  Conclusion 
The ARQuake project has shown how it is possible to 

take an existing open source game Quake, and modify it 
from the desktop paradigm to mobile outdoor augmented 
reality. The modifications are relatively simple, and the 
same ideas could be used to modify many games of 
similar design if source code is available. We hope that 
by demonstrating the ease with which changes can be 
made, that game developers will include hooks into their 
software to support 3D trackers, HMDs, and video 
overlays from the start, making it possible to play more 
games on exotic equipment and open up exciting new 
possibilities for computer entertainment. 

7  Acknowledgements 
The ARQuake project was originally conceived by 

Dr. Bruce Thomas of the Wearable Computer Lab at the 
University of South Australia, and with Wayne Piekarski 
(see Figure 20) led a student project group (Ben Close, 
John Donoghue, John Squires, Phil DeBondi, and 
Michael Morris) to integrate the 3D tracker controls into 
Quake, develop the haptic feedback gun, and create new 
levels and recoloured monsters. Wayne Piekarski now 
maintains the ARQuake project in sync with the existing 
Tinmith hardware and software systems for 
demonstrations, and added the texture overlay feature 
and other playability tweaks. The latest ARQuake 
demonstration levels were designed by Arron Piekarski. 
Finally, this project would not have been possible 
without Id Software donating the Quake source code to 
the public under the GNU Public License. 

For more information about the project, as well as 
copies of our papers, pictures, and videos, please visit 
our web site at http://wearables.unisa.edu.au 

8  References 
[AZUM01] Azuma, R., Baillot, Y., Behringer, R., Feiner, 

S., Julier, S., and MacIntyre, B. Recent 
Advances in Augmented Reality.  IEEE 
Computer Graphics and Applications, Vol. 21, 
No. 6, pp 34-47, Nov 2001. 

[AZUM97a] Azuma, R. A Survey of Augmented Reality.  
Presence: Teleoperators and Virtual 
Environments, Vol. 6, No. 4, pp 355-385, 1997. 

[IDSO01] Id Software. Quake.  
http://www.idsoftware.com 

[OTRK02] Studierstube Augmented Reality Project. 
OpenTracker.  
http://www.studierstube.org/opentracker 

[PIEK01b] Piekarski, W. and Thomas, B. Tinmith-Metro: 
New Outdoor Techniques for Creating City 
Models with an Augmented Reality Wearable 
Computer.  In 5th Int'l Symposium on Wearable 
Computers, pp 31-38, Zurich, Switzerland, Oct 
2001. 

[PIEK02a] Piekarski, W. and Thomas, B. H. Tinmith-evo5 
- A Software Architecture for Supporting 
Research Into Outdoor Augmented Reality 
Environments.  Technical Report, University of 
South Australia, Adelaide, SA, Report No. CIS-
02-001,Jan 2002, 
http://www.tinmith.net/papers/piekarski-tr-
arch-2002.pdf. 

[PIEK02d] Piekarski, W. and Thomas, B. H. ARQuake: 
The Outdoor Augmented Reality Gaming 
System.  ACM Communications, Vol. 45, No. 
1, pp 36-38, 2002. 

[SUTH68] Sutherland, I. A Head-Mounted Three-
Dimensional Display.  In Proceedings Fall 
Joint Computer Conference, pp 757-764, 
Washington, DC, 1968. 

[THOM00] Thomas, B., Close, B., Donoghue, J., Squires, 
J., De Bondi, P., Morris, M., and Piekarski, W. 
ARQuake: An Outdoor/Indoor Augmented 
Reality First Person Application.  In 4th Int'l 
Symposium on Wearable Computers, pp 139-
146, Atlanta, Ga, Oct 2000. 

[VRJG02] Virtual Reality Applications Centre. VR Juggler 
- Open Source Virtual Reality Tools.  
http://www.vrjuggler.org 

[VRPN02] University of North Carolina. Virtual Reality 
Peripheral Network.  
http://www.cs.unc.edu/Research/vrpn 

 

 
Figure 20 - Wayne Piekarski and Dr Bruce Thomas 




