

Mobile IPv6 in a wireless Internet

Hesham Soliman

Advanced Networking Flarion Technologies

© 2003 Elarian Tachnologias

Trends and forecasts in the wireless world Mobile IPv6 overview Mobile IPv6 optimisations From Host to Network mobility Dual stack mobility

© 2003 Elarian Tachnologias

Trends in the wireless world

- Mobile subscribers to exceed 1.2 Billion in 2004
- The merger between the mobile world and the Internet
- Heterogeneous access technologies
- Peer to peer applications on the rise
- Internet will be a mixture of IPv4, IPv6 and Dual Stack networks

 Different wireless technologies for different scenarios: PAN (e.g. Bluetooth), LAN (e.g. 802.11) and WAN (e.g. Flash OFDM, WCDMA)

- Different characteristics for each wireless technology: Coverage, QoS, Cost, reliability ...etc
- Different IP versions: IPv4 and IPv6

The future is peer!

- Peer to peer communication already exists in cellular networks
- IP-based cellular networks will inherit the same services and more:
 - Voice
 - Multimedia messages
 - Gaming
 - Chatting
 - Push to talk
 - And many more in future!

Why IP mobility?

© 2002 Elarian Tachnologias

Requirements for IP Mobility

Compatibility with existing Internet hosts and applications

- No modification of existing routers or routing mechanisms
 Internet-wide mobility : "reachable everywhere"
- No modification of non-mobile hosts (i.e. TCP/IP stacks)
- No modification of applications
- Maintain connections while moving between subnets

Mobile IPv6 – Routing through HA

© 2002 Elarian Tachnalagian

Mobile IPv6 – Route Optimisation

© 2002 Elarian Tachnologian

Flarion Securing Route optimisation

Why do we need to secure it?

 The BU orders the receiver to send traffic to a different address (e.g. Packets intended for address X should be sent to Y)

- - Direct a MN's traffic to themselves (steal traffic)
 - Direct a MN's traffic somewhere else (Bombing attacks)
 - Deny a MN from communicating with other nodes (DoS) attacks).
 - More attacks are possible.

Securing Route optimisation...con

- What type of security is needed?
 - We need to AUTHENTICATE the MN that is AUTHORISED to send a BU. Encryption is not required, no confidential information.
- Which identities need to be used?
 - A MN needs to prove that it **owns** both, the home addres and CoA included in the BU.
 - Identity like: <u>Hesham@flarion.com</u> does not mean that Hesham owns home address X or CoA Y.

MIPv6 security –Return Routability

© 2002 Elarian Tachnologian

Mobile IPv6 optimisations

- Localised mobility management:
 - Uses Hierarchical MIPv6 (HMIPv6) to allocate a local HA (Mobility Anchor Point, MAP) in the visited network.
 - MNs only need to update the local MAP whenever they move within the local domain
 - Saves sending BUs to all CNs every time the MN moves
- Fast Handovers:
 - Allows MNs to anticipate movement in order to avoid movement detection delays.
 - When MN moves, the router on-link forwards traffic to its new location

© 2002 Elarian Tachnologias

Mobility in a dual stack Internet

© 2002 Elarian Tachnologias

- MIPv4 allows IPv4 nodes to move in IPv4 networks
- MIPv6 allows IPv6 nodes to move in IPv6 networks
- Internet will be a mixture of IPv4, IPv6 and Dual Stack networks

Flarion Best Case scenario today

- Every handoff involves
 - MIPv4 signaling
 - MIPv6 signaling
 - Route Optimization signaling
 - Multiple BUs/BAs for v6
 - Fast Handoff signaling
 - Various signals/processes for v4 and v6

Deployment nightmare - optimization spaghetti

- MIPv4 and MIPv6 are NOT compatible technologies
 - Basic mechanisms are different
 - Optimizations are even more different
- Mobility Management based on MIP becomes untenable

Solution

Use MIP as migration tool

- Use the tunneling capability of Mobile IP to forward both IPv4 and IPv6 traffic over the same Mobile IP created tunnel.
- MIPv4 extensions
 - Allow IPv4 and IPv6 HoAs to bind to an IPv4 CoA
- MIPv6 extensions
 - Allow IPv4 and IPv6 HoAs to bind to an IPv6 CoA

Creating DS Bindings in MIPv4

Creating DS Bindings in MIPv6

Flarion DS-MIPv4 scenario – IPv4 dominant

Flarion DS-MIPv6 scenario – IPv6 dominant

Thank you!

© 2002 Elarian Tachnologian