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Abstract

Micro-Controller Linux (uClinux) is an open source project that adds support to Linux
that enable it to run on microprocessors without Memory Management Units (MMU).
These types of processors  have  traditionally  made up the bulk of processors  used in
embedded systems.

This paper will cover the basic architecture of uClinux, and in particular the design and
code changes required to deal with not having any memory management. The kernel,
device  driver,  library  and  application  level  changes  will  be  detailed  and  explained.
Many people will be surprised at how similar Linux is without an MMU!

What uClinux can do today will be covered, and this includes what hardware platforms
are supported,  what peripherals  and what application and library packages have been
ported. It will also cover what tools are required, and how to get setup for and develop
with uClinux.



1. Introduction

Micro-controller  Linux (uClinux for short) is an open source project to port Linux to
microprocessors that do not have Memory Management Units (MMU). The goal is to
create complete working systems, so this involves kernel, library and application level
work.

As  a  project  uClinux  started  in  1998  when  Jeff  Dione  and  Kenneth  Albanowsky
attempted a port of the Linux kernel to the Motorola 68328 Dragonball processor (this is
the one used in the classic Palm Pilot PDA). It was using a 2.0.33 kernel. From here
Greg Ungerer ported it to the Motorola ColdFire processor family at the end of 1998
and start of 1999. Soon after followed ports to ARM cores (I think the first was done by
WireSpeed, maybe Joe DeBlequeue) and to the AXIS ETRAX architecture. Many other
ports or architecture, boards and kernel versions have followed since.

The most extensive code changes are required to the Linux kernel. uClinux systems are
true Linux systems though, the kernel support for running without an MMU is in an add
on to Linux,  it is not a different code base. We start with a stock Linux kernel source
tree and add support for running without an MMU. So the uClinux kernel support is no
more than a patch against standard Linux kernel sources.

Although  the  micro-controller  market  contains  everything  from  4bit  to  64bit  CPU
architectures uClinux is targeted at the classic 32bit (and even 64bit) microprocessors.
There is no support for 16bit or less CPU’s.

 The  differentiation  between  a  micro-controller  and  a  standard  CPU  is  blurry.  A
simplistic  definition  is  any  CPU that  may  be  used  in  an embedded  system could  be
considered  a micro-controller.  Better  is any CPU that  integrates  a number  of system
peripherals with the CPU core is a micro-controller. Historically these types of CPUs are
low cost or specialized for certain types of functions, and thus are not as full featured as
their  real  computer  counterparts.  Often  that  meant  they  did  not  have  features  like
memory management units. In recent years though the trend is to include MMUs, even
on ultra low cost specialized CPU’s.  In any case uClinux is all about supporting CPUs
that do not have MMUs.

Interestingly because uClinux is a set of additional patches for standard Linux sources
all the existing CPU support for processors with MMUs is still present. The one kernel
sources tree supports both processors with and without MMUs.
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Pronounced  "you-see-linux",  the  name uClinux  comes from combining  the
greek letter "mu" and the english capital "C". "Mu" stands for "micro", and
the "C" is for "controller".



2. Kernel

The uClinux kernel is just the Linux kernel with support added for processors without
MMUs. So, for the most part, you get the full Linux kernel feature set when you use
uClinux.  The Linux kernel  API (in  this  case the system call  set)  is  unchanged  from
standard Linux. Architecture implementation differences still apply, but in the same way
as for all ports of Linux to non x86 architectures.

Currently  there  are  two  stable  streams  of  uClinux  kernel  development  and  one
experimental. Stable uClinux kernels exist based on 2.0.39 and 2.4.22, and the current
cutting edge kernel is based on 2.6.0-test11 (at least as of this writing –  it is probably
newer by the time you read this).

The uClinux system is fully multi-tasking, with the usual process and process control
model. All filesystems and related operations are identical. As is all networking support,
and even the device driver interfaces are unchanged for uClinux. uClinux even supports
dynamic kernel loadable modules.

Obviously some changes are required  to the memory management sub-system of the
kernel. Outside of architecture support this is the bulk of the uClinux patch. There is no
notion of virtual memory (VM), and no form of memory protection between processes,
between the kernel and processes or hardware device register sets. That is a fact of life
without an MMU.

Not  withstanding  the  different  memory  subsystem  uClinux  maintains  the  classic
separation of user and kernel space. Each has its own stack, just as on a VM system, and
if  the  hardware  supports  it  the  kernel  maintains  different  privilege  levels  for  each
(although clearly it doesn’t  mean much when there is no memory protection!). Where
hardware does not support privilege levels, or different mode stack pointers these are
emulated in software.

A common question is whether uClinux needs less memory than a VM Linux system. In
general the answer is no. But most uClinux systems are small by design, keeping their
setup to a minimum. Practical uClinux systems can be built in as small as 1MB of RAM.

2.1 Supported Architectures

The  range  of  CPU  architectures  and  specific  CPUs  that  uClinux  supports  is  truly
amazing. At the very least the list is:

 Motorola 68k family (68x302, 68306, 68x328, 68332, 68360)

3



 Motorola ColdFire (5206, 5206e, 5249, 5272, 5282, 5307, 5407)
 ARM (silicon from Atmel, NetSilicon, Aplio, TI, Samsung, Conexant, and more)
 Intel i960
 Sparc LEON
 MIPS (Brecis, …)
 NEC v850 family
 Hitachi H8/300
 Xilinx Microblaze (FPGA processor)
 Altera NIOS
 AXIS ETRAX 
 Analog Devices Blackfin

There is more in development. The ones that I know about include:

 Hitachi Super SH2
 Motorola MCORE
 OpenCORES OpenRISC (FPGA)

There is probably more, the uClinux community is very active!

2.2Kernel Internals

The  key  difference  between  standard  Linux  and  uClinux  is  the  lack  of  any  form
hardware assisted memory management, that is the system supports no form of virtual
memory. That implies no on demand loading, and that applications must wholly fit in
RAM  (or  at  least  RAM  and  flash/ROM  if  executing  in  place).  No  current  uClinux
systems support swapping to any form of secondary storage either.

The underlying memory allocation system of Linux is used “as  is”.  The management of
free  and used areas of  memory can  be identical,  it  does  not  matter  that  virtual  page
mappings exist on top of used memory or not. The only change in this area is to allow
the  Linux  allocator  to  keep  regions  of  larger  sizes  available  for  allocation.  When  a
memory allocation is requested in uClinux the kernel  allocator needs to find a single
contiguous  chunk  of  RAM  big  enough  to  satisfy  the  request.  It  is  not  possible  to
virtually map a set of pages together to construct a larger region, so uClinux needs these
larger allocation regions to satisfy large requests.

For  the  most  part  the  virtual  mapping  support  code  is  just  stubbed  out  for  uClinux.
Virtual  and  physical  addresses  are  treated  as  identical.  Most  kernel  data  structures
associated  with  virtual  memory  support  are  left  intact,  and  the  internal  function
interfaces  left  unchanged.  The changes made within the 2.6 series kernels  to support
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uClinux are clean and reasonably small, and well demonstrate the low overall impact
adding MMUless support has had on the Linux kernel.

There are some interesting side effects of not having virtual memory in other parts of
the kernel. It is worth going over those here, the four key ones are:

1. no easy way to implement real fork()
2. no way to dynamically grow an applications stack
3. no way to dynamically grow a heap (effects sbrk() system call)
4. memory fragmentation problems

Fork is more of problem that it would first seem. A true fork creates a mirror image of
the current processes memory space, and then each of the parent and child get to execute
in their own memory space. What one does has no effect on the other. Problem is that
we have no notion of a virtual address space, when applications are running in uClinux
they are all sharing the same address space with each other (and the kernel, and usually
peripheral devices as well). When pointers are created, when call return addresses are
pushed onto a stack, these are all absolute addresses. You cannot just copy the process
memory image to another location,  all these absolute addresses will now be wrong –
pointing back into the parent’s  memory region.  There is also no way to “fix”  these
absolute addresses as you copy, you just cannot tell what is really a pointer and what is
random data. 

For efficiency sake in uClinux we use the  vfork() system call in place of  fork(). With
vfork() both parent and child share the memory region of the process. The semantics are
that the child process runs to either  exec() or  exit() completion, the parent sleeps until
then  and  resumes  normal  scheduled  execution  after  that.  The  child  process  must  be
extremely careful to leave the parent memory region in a consistent state.  vfork() has
been around for years, originating from BSD UNIX. The reasoning behind it was that
most programs  fork() then do an  exec() very soon after,  effectively tearing down the
copy of the memory space that was just copied in the fork().

Without virtual memory we have no page mapping and there is no way to set markers
for when the application stack becomes full. In uClinux fixed size stacks are allocated
for each process at exec() time. The stack size is stored as part of the binary program file
header, so it can be set on a program by program basis to minimize wasted memory.

Also without page table mappings in place we cannot dynamically grow a process heap
in the conventional way.  There is no simple way to implement the convention  sbrk()
system  call  that  grows  the  heap  contiguously.  It  is  strait  forward  to  allocate  more
memory, just not easy to make it contiguous with the current heap allocation. It turns
out this is relatively easy to work around in the library code. The trick is to use mmap()
to allocate memory instead of sbrk(). Using mmap() means the kernel will keep track of
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the application allocated memory regions (which can be anywhere in the system address
space) . This is nice, when the process exists it is simple to walk the list of associated
mmap regions and free them back to the kernel free memory pool.

Lastly memory fragmentation is generally more of a problem under uClinux. When the
kernel or a process tries to allocate a chunk of memory it must be fulfilled with a single
contiguous chunk, that means that a single region of the right size needs to be found –
separate smaller pages cannot be virtually mapped together to form the desired region
size.

3. Libraries

There is one good reason you would not use glibc in uClinux systems, it is rather large!
It has been done, but in practice no one uses it.

The preferred  library  for use in  uClinux systems is uClibc.  It  is a descendant  of the
original uClinux library uC-libc. It is a collection of lightweight, standards compliant,
functions  that  give  you  about  95%  coverage  of  the  glibc  function  set,  but  is  much
smaller. As a general rule anything that compiles and works on glibc will compile and
work on uClibc. uClibc can be used on both MMU and MMUless systems. uClibc can
be used as a shared or static library, and offers many advanced features like threading.

Some uClinux supported architectures support shared libraries. Currently they are only
generally  supported  on  m68k/ColdFire  based  systems.  There  has  been  at  least  one
implementation of shared library support for ARM based uClinux systems, but this has
never been made available as GPL open source (as far as I am aware).

Fundamentally two changes need to be made to a C library to support uClinux. For one
vfork() needs to be implemented, and secondly the malloc() family of functions needs to
be changed to use  mmap() as the system call to get and free memory. Generally these
are simple to do.

Many  other  libraries  have  also  been  ported  to  uClinux,  The  list  includes  openssl,
libpcap, zlib, libjpeg, libpng, and many others.

4. Applications

Applications are loaded and run the same way under uClinux as Linux. Applications are
made up of the same fundamental parts in uClinux too, they each have a code portion
(sometimes called  the text  segment)  an initialized  data  section  (often  called  the data
segment), an un-initialized data section (called the bss) and a stack.
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One notion that is supported on many uClinux target architectures is the ability to leave
the code section of an application in fixed random access storage (say something like a
flash or ROM memory) and execute the instructions from that memory space. This is
called “execute in place”  (XIP) and can provide great memory savings. For this to be
possible the entire code section of the program must be stored in one contiguous chunk.
Not many filesystems actually do this.

Of-course uClinux also supports the more typical notion of loading a programs code and
data into RAM and executing it from there.

4.1 FLAT Files

uClinux uses a new application binary file format  called the flat file. The reasoning for
a new file  format  is two fold.  Primarily  we want  to  simply  the loading  and running
process for an application. Secondly we want a very small and lightweight binary format
(we want to be able to build really small footprint systems).

On a virtual memory systems applications are absolutely linked to load and run in there
own virtual memory space. Addresses within the code and data are fixed in that virtual
address space. Generally we don’t  have fixed addresses in uClinux. An application may
be loaded and run anywhere in RAM, or when XIP at some location in flash/ROM. We
will not know in advance at what memory address the code will actually reside in.

There  is  basically  two different  methods  used  in  uClinux  to  deal  with  the  unknown
address problem.

1. Relocation

Relocation entries are stored in the flat binary. When the program is being loaded to
run the kernel flat loader (binfmt_flat) patches the code and data with the relocations
(it uses the addresses range allocated for this application as the relocation address).
Obviously for this method an applications code must be loaded into RAM, it cannot
be run XIP in flash/ROM.

2. Position Independent Code (PIC)

When  compiling  the  application  we  instruct  the  compiler  to  generate  position
independent  code,  that  is  code  that  has  no  absolute  address  references.  It  is  not
enough though to just have the code position independent though, we also need to
have the data section position independent.  This is typically achieved through the
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use of a global  offset table,  where a table of address  offsets  is created for  every
address and all accesses are indexed through a base register.

PIC code often tends to be a little slower, due to the indirect access required. But for
us it has the advantage of allowing sharing of code regions and for XIP. Note that
every instance of a running application still has to have its own data segment and
stack in RAM, only the code segment  can be shared, or left and used in place in
flash/ROM.

It would be fair to say that the PIC method is more popular in uClinux systems. But it
cannot  be  supported  on  all  architectures,  and  it  does  require  a  compiler  capable  of
generating  PIC  code  and  data.  Relocation  is  simpler  to  implement,  and  often  is
supported first on a new uClinux architecture port.

Relocation and PIC are not mutually exclusive, both can and often are supported on a
system. The kernel loader can determine from the flat format file header whether the
program can be run XIP or not.

Code 

Data -- initialized 
            bss 

 
Stack 

Malloc region #0 

Malloc region #1 

This diagram is a simplistic representation of what a processes memory mapping might
look like. Note that typically the data and stack regions are allocated as a single chunk,
and notice that this is dislocated from the programs code section. The code section may
well be in flash/ROM or some other polace in RAM –  this is typical for XIP. It is also
possible  for  a relocation  load  that  the  code,  data  and  stack  are  allocated  as a single
chunk, and thus would be contiguous. Also note the malloced regions (that is what is
conevntially referred to as the heap) is allocated from whatever free memory the kernel
has available, again almost never contiguous to the processes code or data regions.

Although it  would  be possible  to support  ELF format  applications  on uClinux it  has
never been done. It would require relocating the code and data at load time – unlike on a
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VM Linux kernel where it is already fully linked. So the Linux kernel ELF loader could
not be used as it is.

The other advantage of flat format files is that they are extremely small. The header is
40 bytes, and no padding is used within the file. 

4.2 Application Ports

The great thing about building a system on top of standard Linux and preserving the
API is that you can port  and use just about any application to uClinux that exists for
Linux. The set of ported applications for uClinux is simply huge.

Here is a short list of ported application packages:

TOOLS/UTILITIES
sash shell, minix shell, busybox, tinylogin, agetty, python, vi (clone), tip

NETWORKING
net-tools, ping, ipfwadm/iptables, tftp, ftp, dhcpcd, traceroute, tcpdump, ssh, ntp, wget,
iproute2

SERVERS
init,  inetd,  pppd,  pptpd,  diald,  boa  (web),  telnetd,  tftpd,  ftpd,  dhcpd,  samba,  squid,
snmpd, zebra, Freeswan (IPsec), dnsmasq, gdbserver, sshd

FILESYSTEM
mount/umount  (including  NFS),  smbmount/smbumount,  e2fsprogs,  fdisk,  reiserfs
tools,

MISCELLANEOUS
mp3play, microwindows, mtd-utils, netflash, hotplug tools

This is but a sampling of the packages ported. The uClinux-dist distribution contains
over 150 application packages currently that can run on uClinux.

5. Tools

Like any other Linux system uClinux systems are built using the standard GNU tools.
Exact versions vary between architectures but currently many of the main-stream stable
targets are using:
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 binutils-2.14
 gcc-2.95.3
 gdb-5.0

On many targets the uClinux community has patched these tools to improve position
independent code and data support, and support shared libraries. This is certainly true of
the m68k and arm tool chains used for uClinux.

Moves are under way to update to more recent  gcc versions (specifically 3.3) and to
integrate many of the uClinux specific patches back into the gcc source base.

Gdb is interesting, for some architectures its simulator capabilities can be used to run
uClinux. For example the ARMulator simulator extension of GDB can run uClinux in
its own right. Makes a great development tool to get up to speed on uClinux on ARM
platforms, or to develop without real hardware.

Gdb is also useful in other ways. Many of the embedded processors now days contain
jtag, bdm or on-chip debug modules. Generally these can be driven by simple hardware
dongles to parallel ports or similar on a PC. Many are supported through servers or with
patches by gdb. Many offer advanced debug features like the ability to start and stop the
CPU, set break points, dump and change memory. Many also allow programming flash
memory  in-circuit.  All  these  features  make  debug  a  lot  easier  on  these  embedded
platforms.

Gdb  can  also  be  used  to  debug  uClinux  applications.  Normally  this  is  done  via  a
network debug arrangement, running the gdbserver stub on the uClinux target system.

Another  of  the  key  tools  required  for  uClinux  development  is  the  elf2flt converter.
Elf2flt converts a uClinux application that has been compiled as an ELF format object
(as is normally done) to a uClinux flat format file. The conversion is actually reasonably
strait forward 

For those unfamiliar with developing for deeply embedded targets the usual setup is to
cross compile  for your target  from a host development PC. This is true for uClinux,
where  the  target  system  is  almost  never  used  as  the  development  system.  Most
developers  choose  a  Linux  PC  as  their  development  system.  It  has  been  done  on
PowerPC  based  laptops  as  well.  And  for  the  truly  disturbed  you  can  even  develop
uClinux systems (compiling from source and all) under Windows using Cygwin.

6. Developing
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Putting together a development environment to build uClinux systems for the first time
can be quite a daunting task, even for seasoned developers. The best place to start is
with the uClinux-dist source distribution package, and the pre-built binary tool chains
on uclinux.org.

The uClinux-dist source package is an all-in-one source package.  It includes uClinux
kernels (currently 2.0.x, 2.4.x and 2.6.x kernels), the uC-libc and uClibc libraries, and a
huge  collection  of  ported  application  packages.  A  makefile  setup  spans  all  these
components and allows you to build entire systems with this one large source tree.

The uClinux-dist  package extends the familiar Linux kernel  configuration framework
and makes it simple to build for a supported platform. After installing the source and a
tool  chain  a  few  simple  clicks  through  the  top  level  configuration  and  you  can  be
building a uClinux image that is ready to run on your hardware.

The uClinux-dist framework also lets you drill down and configure the kernel options
and  to  easily  choose  which  applications  to  include  in  the  final  target  image.  The
uClinux-dist really does make it simple to build complete systems, and saves you from
having  to  build  the  individual  system components  separately  (kernel,  libraries,  apps,
etc).

Porting new applications  to uClinux is often quite  strait  forward.  Special  attention is
needed in dealing with the  fork()/vfork() change, and some thought should be given to
an initial stack size. Otherwise many programs can easily be cross-compiled and used
on uClinux systems.

Relative to developing programs on normal desktop and server systems working with
uClinux is somewhat more challenging. Most new developers to embedded systems find
the disassociation of the development host and their target a little disconcerting.

7. Future Work

uClinux is a very active project, there is always a lot going in the uClinux community.
The varying interests of developers in this space pulls development in a lot of directions.

Over the past year much effort has been put into getting the core uClinux support into
the mainline 2.6 Linux kernel sources. This has worked out pretty well, with the core
present, and the m68knommu, NEC v850 and H8/300 processor architectures also in.
There is always much work to be done maintaining these in the mainline kernel sources.

More architecture ports are on going. Particularly interesting at the moment is the work
going on porting uClinux to FPGA based processors. This is a really exciting area, and
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progress here has been good. UClinux is currently running on the Xilinx Microblaze,
Altera NIOS and OpenCORES OpenRISC soft cores. The Microblaze and NIOS ports
are essentially complete, although not all NIOS code is yet present in the uClinux CVS.

New platforms with currently supported architectures are always being added to. This is
generally pretty easy to do. Also peripheral support is ongoing. It is usually not difficult
to  port  existing  device  drivers  for  Linux  to  new platforms.  Almost  always  the  most
effort is required just to deal with architectural differences (endianess, address memory
scheme, etc) than anything else.

Shared  libraries  are  only  freely  supported  on  one  architecture  family  current,
m68k/ColdFire.  It is a heavily request feature for other platforms. There needs to be
some work done to get it supported on ARM platforms and others too.

Another  feature  that  is  often  requested  is  Real  Time  support.  The  RTAI  real  time
extensions  for  Linux  have  been  ported  to  the  at  least  one  member  of  the  ColdFire
processor family running uClinux, and the RTlinux extensions where ported to an old
version of uClinux for the m68k (Dragonball) based uCsimm.

 It is often commented that one day all processors will just have MMUs. This may well
be true. In the meantime we have uClinux to satisfy the need for advanced operating
systems on typical deeply embedded systems. uClinux will need to be around for a long
time, processors without MMUs are not going away any time soon.
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