Cairo
December 30, 2003 =

=icalroi=

Cross-device Rendering for Vector Graphics

Keith Packard
Hewlett-Packard

Cambridge Research Laboratory
keithp@keithp.com
http://cairographics.org

Slide:1

Cairo
December 30, 2003 =

Cairo Tutorial Outline

@ Cairo origins
@ Why write a new graphics library
@ Architecture
@ Relationship with other projects
@® Examples
@ Demonstrating most of the cairo API
@ Drawing Splines
@ How cairo computes shapes
@ Wrap up

Slide:2

Cairo
December 30, 2003

Cairo Design Goals

@ PostScript rendering model

@ Porter Duff image compositing
@ Matching output on all devices
@ Elegant language binding

@ Operating system independent

Slide:3

Cairo
December 30, 2003 =

History

X Render Extension
@ Moves sophisticated geometry to client
@ Uses image compositing

@ Xr — Render based drawing library
Needs printing support
@ Needs non-Render support
@ Needs non-X support

@ Redefined Xr as Cairo
@ Device independent, portable rendering

Slide-4

Cairo 'ﬁ
December 30, 2003 =

Target Rendering Systems
@ X Render Extension
@ Motivation for original Xr library
@ Core X graphics
@ Required for compatibility
@& In-memory images
@ For drawing applications
® Windows, Mac OSX
@ Target applications are portable
® OpenGL
@ Accelerated output on many systems

Slide 6

Cairo
December 30, 2003 =

2D Graphics

@ Document-centric

@ Lots of text
@ Lots of images and icons
@ Few large geometric figures

@ Tightly coupled with printing

@ Fonts and graphics must match across
output devices

® Minimal animation

@ Performance insensitive
@ Incremental screen updates

Slide:7

Cairo 'ﬁ
December 30, 2003 =

2D Applications

@ Incremental update

@& Off-screen rendering
@ Combination of many parts
@ Orthographic
@ Lots of rectilinear elements
@ Very few rotated objects
@ Multiple output device support
@ Screen, printer, image files
@ Operating system independent
w7l @ Applications don't want to be tied down s

Cairo
December 30, 2003 =

3D Graphics

@ Physical-world Centric

@ Lots of geometry
@ Lots of textures
@ Minimal text

@ Rarely printed
@ Cross-device equivalence not important
@& Animated

@ Performance sensitive
@ Redraw entire scene each frame

Slide:9

Cairo 'ﬁ
December 30, 2003 =

2D Applications on 3D API

@ Off-screen drawing not well supported
@ GL provides pbuffers, but not in DRI

@ Device dependent
@ Rendering only on the screen
& No printing support

@ Poor text support
@ Glyphs as textures, no explicit font support

Slide 10

Cairo "i
December 30, 2003 =

Cairo on 3D API

@ Cairo supports multiple back-ends
#® OpenGL layer has been implemented

@ Can provide window-system
iIndependent accelerated rendering

@ Reasonable performance requires p-
buffers

Slide 11

Cairo 'ﬁ
December 30, 2003 =

PostScript Graphics Model

& Stateful

@ State manipulation functions don't draw
@ Drawing functions don't change state
@ State can be saved/restored in one call

@ Paths

@ Construct path out of simple shapes
& Stroke, fill or clip

@ Affine transformations
@ Scale, rotate, translate and shear

Slide 12

Cairo
December 30, 2003 =

Choosing PostScript

& Well adopted standard
@ PostScript, PDF, Adobe lllustrator, ...
@ Easy to use

@ Functions take few arguments
& Operations are largely orthogonal

@ Very capable
& SVG port was straightforward

Slide 13

Cairo
December 30, 2003 =

Paths

@ Sequence of lines and Bézier splines
@ Constructed incrementally

@ Can be stroked or filled
® Pen transformed at stroke time

Slide 14

Cairo
December 30, 2003 =

Text

@ Two kinds of font selection

@ “Toy” API for demos - family/style/slant

@ Real API uses platform specific font
matching.

@ Two kinds of glyph selection
@ Unicode (UTF-8) for simple applications
@ Glyph indices for complex layout

@ Two kinds of output

@ Convert to paths
@ Draw directly

Slide 15

Cairo
December 30, 2003

T
®
U L

o |
elele ==

Related Projects

Slide 16

Cairo _
December 30, 2003 =

Related Projects

@ Output Devices:
@ X Render Extension
@ OpenGL
@ Text
& Xft library
@ Fontconfig

® SVG
@& libsvg
@ libsvg-cairo

Slide X7

Cairo "i
December 30, 2003 =

X Render Extension

@ X Extension for accelerated graphics
Based on image compositing

@ Trapezoids for geometry

@ Special support for text

@ Provides full cairo support

Slide 18

Cairo
December 30, 2003

OpenGL

@ Hardware acce
@ Hardware acce

erated compositing
erated triangles

@ Limited text support
& With pbuffers, provides full cairo

support

Slide 19

Cairo
December 30, 2003

Xft Library

@ Just the text 'mam

@& Connects FreeType font library wit
@ Uses Render extension where avai
@ Uses FontConfig

N X

able

Slide 20

Cairo
December 30, 2003

FontConfig library

@ Font management for Linux

@ Configuration — installation and selection

@ Customization — preferences and
localization

#® No rendering, just naming
@ Not X specific

@ Cairo uses FontConfig on Linux
systems

Slide 21

Cairo ‘Fﬁ
December 30, 2003 =

Scalable Vector Graphics

®SVG 1.1 is a W3C Recommendation
& XML based file format

@ Vector graphics using hierarchical
structured representation

@ Includes animation and gradients
@ Pixelization is device specific

Slide 22

Cairo
December 30, 2003 =

Librsvg/libsvg

@ librsvg
& Gnome2 SVG library
@ libart based - no acceleration

@ libsvg
@ Generic SVG library

@ Largely copied from librsvg
@ Uses an abstract rendering interface

Slide 23

Cairo
December 30, 2003 =

libsvg-cairo
@ Expresses libsvg interface to cairo

#® Can embed SVG graphics in
applications

Can load SVG files from disk

Slide 24

Cairo
December 30, 2003

SVG Example

Slide 25

Cairo
December 30, 2003 =

Cairo APl and Examples

Slide 26

Cairo
December 30, 2003

Cairo API

@ Paths

@ construction

@ filling, stroking
Images

@ loading from disk

@ transforming

@ using as pattern
@ Text

@ Simple APl example

Slide 27

Cairo vﬁ
December 30, 2003 =

Rendering in Memory
#define STRIDE (WIDTH * 4)

char image[STRIDE*HEIGHT];

main (void) f{
cairo t *cr = calro create ();

cairo set target image (cr, image,
CAIRO FORMAT ARGB32,
WIDTH, HEIGHT, STRIDE);
draw (cr);
write png argb32 (image, OUTPUT FILE,
WIDTH, HEIGHT, STRIDE);

"*j Slide 28

Cairo

December 30, 2003

Rendering to X

int main (void) {

cairo t *cr = calro create ();
Display *dpy = XOpenDisplay (0);
Window w = XCreateSimpleWindow (dpy,
RootWindow (dpy, 0),
O, 0, WIDTH, HEIGHT,
O, 0, WhitePixel (dpy, 0));
XEvent ev;
XSelectInput (dpy, w, ExposureMask);
XMapWindow (dpy, w);
cairo set target drawable (cr, dpy, w);
while (XNextEvent (dpy, &ev) == 0)
1f (ev.type == Expose && !ev.xexpose.count)
draw (cr);

Slide 29

Cairo
December 30, 2003 =

Paths
& Built from lines and splines.
#® cairo_ move to() set current point
@ cairo line to() draw line
& cairo curve to() draw Bézier spline
@ cairo_close path() draw line to start
& Can also be built from glyphs
@ cairo_text path() path from UTF-8

@ cairo glyph path() path from glyphs
& Part of graphics state
@ cairo save()/cairo restore() affect path

Slide 30

Cairo 'ﬁ
December 30, 2003 =

Using Paths

@ Stroke or Fill
@ cairo_stroke walks path outline with pen
@ cairo fill paints interior of path

@ both operations consume the path,
resetting the current path to empty

@ Clip

@ cairo_clip intersects interior of path with
current clip

@ Convert path to stroked version
@ not yet named

Slide 31

Cairo
December 30, 2003

Path Example

void basket (cairo t *cr) {
cairo move to (cr, 10, 10);
cairo line to (cr, 510, 10);
cairo curve to (cr, 410, 200, 110, 200,
10, 10):

Slide 32

Cairo
December 30, 2003

Stroking Paths
@ Elliptical pen (line width radius)

@ Join styles
@ CAIRO LINE JOIN MITER with limit
@& CAIRO LINE JOIN BEVEL
@ CAIRO LINE JOIN ROUND uses pen
@ Cap styles

& CAIRO LINE CAP BUTT

@ CAIRO LINE CAP ROUND

@& CAIRO LINE CAP SQUARE

Slide 33

Cairo
December 30, 2003

Stroke Example

volid draw (cairo t *cr) {
basket (cr);
cairo set line width (cr, 8);
cairo set rgb color (cr, 0, 0, 0);
cairo stroke (cr);

}

Slide 34

Cairo

=
December 30, 2003 =

Closing the Path

@ cairo close path

@ Draws a line (if necessary) to the start
of the path

@ Draws a join from that line to the first
element of the path

Slide 35

Cairo
December 30, 2003

Close Path Example

void basket (cairo t *cr) {
cairo move to (cr, 10, 10);
cairo line to (cr, 510, 10);
cairo curve to (cr, 410, 200, 110, 200,
10, 10);
cairo close path (cr);

Slide 36

Cairo
December 30, 2003

@ CA
@ CA
@ CA

Caps and joins
® cairo set line cap

RO

RO

RO

NE CAP BUTT
NE_CAP ROUND
NE_CAP SQUARE

® cairo_set line join

@ CA
@ CA
@ CA

RO

RO

RO

h—

b

NE JOIN BEVEL

e

NE JOIN ROUND

=

NE JOIN MITER

T

Slide 37

Cairo
December 30, 2003

Caps and Joins Setup

void vee path (cairo t *cr) {
cairo move to (cr, 0, 0)
cairo line to (cr, 1, 1)
cairo line to (cr, 2, 0);

]
’
[]
’

}

void vee(cairo t *cr, cairo line cap t cap,
cairo line join t join)

cairo translate (cr, 0, 2);

cairo set line cap (cr, cap);

cairo set line join (cr, join);

cairo set line width (cr, 1);

cairo set rgb color (cr, 0, 0, 0);

vee path (cr); cairo stroke (cr);

cairo set line width (cr, 0.05);

cairo set rgb color (cr, 1, 1, 1);

=s0) vee path (cr); cairo stroke (cr);

Slide 38

Cairo ‘wﬁ
December 30, 2003 =

Caps and Joins Example

volid draw (cairo t *cr) {
cairo scale (cr, 50, 50);
cairo translate (cr, 1, -1);
vee (cr, CAIRO LINE CAP BUTT, CAIRO LINE JOIN BEVEL);
vee (cr, CAIRO LINE CAP ROUND, CAIRO LINE JOIN ROUND) ;
vee (cr, CAIRO LINE CAP SQUARE, CAIRO LINE JOIN MITER);

N
¥

Slide 39

Cairo
December 30, 2003 =

Filling Paths

@ Closes path with line to if necessary

@ line drawn from current point to last
move to location

@ Fills interior
@ Even/odd or winding fill rules

Slide 40

Cairo
December 30, 2003 1]

Fill Example

vold draw (cairo t *cr) {
basket (cr);
cairo set rgb color (cr, .8, .1, .1);
cairo fill (cr);

}

-
see Slide 41

Cairo 'ﬁ
December 30, 2003 =

Fill and Stroke

@ cairo save/cairo restore preserve path
@ Could just walk the figure twice
@ Current color is used for stroke and fill

Slide 42

Cairo _
December 30, 2003 =

Fill and Stroke Example

void draw (cairo t *cr) {
basket (cr);
cairo save (cr);
cairo set rgb color (cr, .8, .1, .1);
cairo fill (cr);
cairo restore (cr);
cairo set rgb color (cr, 0, 0, 0);
cairo set line width (cr, 8);
cairo stroke (cr);

Slide 43

Cairo ‘Fﬁ
December 30, 2003 =

Affine Transformations

@ Single matrix combines rotation,
translation, scale and shear

@ Non-projective transformations

@ Pen doesn't change shape along the stroke
#® Transformations are cumulative

@ translate, scale != scale, translate

Slide 44

Cairo vﬁ
December 30, 2003 =

Affine Transform Example

vold draw (cairo t *cr) {
basket (cr);
cairo translate (cr, 50, 50);
cairo rotate (cr, 30.0 * M PI / 180);
cairo scale (cr, .5, .5);
basket (cr);
cairo set rgb color (cr, 0, 0, 0);
cairo set line width (cr, 8);
cairo stroke (cr);

"*j Slide 45

Cairo

December 30, 2003 1]

Even/Odd vs Winding
® Even/Odd counts edges, fills when odd

Winding counts up for clockwise edges,
down for counterclockwise, fills when !
Zero

BOn
| e
see

Slide 46

Cairo "i
December 30, 2003 =

Combining Images

@ Cairo memory surfaces are images

@ cairo_show surface paints one surface
into another

@ Transformed through matrix
@ No projective transforms yet

Slide 47

Cairo vﬁ
December 30, 2003 =

Loading an Image File

calro surface t *
dog surface (int *widthp, int *heightp)
{
int stride;
char *buffer;
buffer = read png argb32 ("dog.png",
widthp, heightp, &stride);
return cairo surface create for image (
buffer, CAIRO FORMAT ARGB32,
*widthp, *heightp, stride);

Lol Slide 48

Cairo
December 30, 2003 1]

Image Example

vold draw (cairo t *cr) {
int w, h;
cairo surface t *dog;
dog = dog surface (&w, &h);
cairo move to (cr, 0, 0);
cairo show surface (cr, dog, w, h);

o AT —
(A=W oAy s

= =

Slide 49

BOn
| e
see

Cairo _
December 30, 2003 =

Image Transformation

vold draw (cairo t *cr) {

int w, h;

cairo surface t *dog;

dog = dog surface (&w, &h);

cairo translate (cr, 100, 0);

cairo scale (cr, 1, .5);

cairo rotate (cr, 30 * M PI / 180.0);
cairo show surface (cr, dog, w, h);

Slide 50

Cairo

December 30. 2003 : - - 4 - 4 = 1|

Resamplmg Modes |

~ @ Nearest Neighbor #®Bilinear
.. Interpolation

O [: : : ' " ' Slide 51

Cairo
December 30, 2003 =

Patterns

@ Apply one surface as pattern on
another

@ Pattern transformed through source
surface matrix

@ Patterns may repeat

Slide 52

Cairo _
December 30, 2003 =

Pattern Example

void draw (cairo t *cr) {
int w, h;
cairo surface t *dog;
dog = dog surface (&w, &h);
basket (cr);
cairo set pattern (cr, dog);
cairo fill (cr);

Slide 53

Cairo
December 30, 2003

Pattern Transformations

@ Source surface holds matrix
@ Constructed with matrix operations

@ Some thought to changing this API

@ Need to add projective transformations
May want procedural patterns

Slide 54

Cairo .
December 30, 2003 =

Pattern Transform

vold draw (cairo t *cr) {
int w, h;
calro surface t *dog = dog surface (&w, &h);
cairo matrix t *matrix = calro matrix create ();
caliro matrix rotate (matrix, .8);
cairo matrix translate (matrix, 30, -150);
calro surface set matrix (dog, matrix);
cairo set pattern (cr, dog);
basket (cr); cairo fill (cr);

Slide 55

Cairo
December 30, 2003 =

Gradients

@ No primitive gradients in cairo

@& Implemented as patterns

@ Bilinear interpolation smooths result
@ Future APl may include more

@ Procedural patterns
@ Triangular patches

Slide 56

Cairo -_— ﬁ
December 30, 2003 =

Gradient Setup

void p (cairo t *cr, double x, double r, double g, double b){
cairo set rgb color (cr, r, g, b);
cairo rectangle (cr, x, 0, 1, 2);
cairo fill (cr);

}

void fill gradient (cairo t *cr, cairo _surface t *g)

{

cairo save (cr);

cairo set target surface (cr, g);
p (cr, 0, 1, 0, 0);

ps{cr, 1,05 1, °0);

p (cr, 2, 0, 0, 1);

cairo restore (cr);

Slide 57

Cairo

December 30, 2003

Gradient Creation

cairo surface t *
create gradient (cairo t *cr, double width, double height)

{

cairo surface t *g;
cairo matrix t *matrix = cairo matrix create ();
cairo surface t *t = cairo get target surface (cr);

g = cairo _surface create similar(t, CAIRO FORMAT ARGB32,

35123
cairo matrix scale (matrix, 2.0 / width, 1.0 / height);
cairo surface set matrix (g, matrix);
cairo surface set filter (g, CAIRO FILTER BILINEAR);
cairo matrix destroy (matrix);

fill gradient (cr, g);
return g;

Slide 58

Cairo

December 30, 2003 : : ; 1

Gradient Example

void draw (cairo t *cr) {

cairo surface t *grad; -
grad = create gradient (cr, 500, 150);
basket (cr);

cairo set pattern (cr, grad);

cairo fill (cr); |

WON _ _ _ . .
mHO Slide 59

|
|
(]

Cairo 'ﬁ
December 30, 2003 =

Text

@ Font selection separate from text
drawing.

@ Current implementation provides only
“toy” font selection API.

@ Arguing over text transformation
system:

Do we want a separate glyph
transformation matrix?

@ Postscript uses one matrix

Slide 60

Cairo
December 30, 2003

Font Selection

@& AP| has been replaced recently

@ “Toy” font selection API

@ Includes specification for family, weight
and slant.

@& No facilities for listing available families
@ “Full” API

@ Exposes native OS font objects

@& Allows full access to underlying font
iInformation.

Slide 61

Cairo
December 30, 2003 =

“Toy” Text API

® Simple font selection

@ family, weight, slant
@ OS independent
@ No font listing support

@ UTF-8 text drawing and extents
functions

@ Still supports full font transformations

Slide 62

Cairo ‘-ﬂﬁ
December 30, 2003 =

“Toy” Text Example

vold draw (cairo t *cr) {
cairo select font (cr, ""“,
CAIRO FONT SLANT NORMAL,
CAIRO FONT WEIGHT NORMAL) ;
cairo scale font (cr, 72);
cairo set rgb color (cr, 0, 0, 0);
cairo move to (cr, 20, 100);
cairo show text (cr, "Hello, world!");

Hello, world!

Slide 63

Cairo

December 30, 2003

Error Handling in C

@ C has no exceptions

#® Checking each return is tedious
@ C programmers rarely bother
@ Lots of broken programs result

Slide 64

Cairo ‘Fﬁ
December 30, 2003 =

Cairo Error Handling

@ Cairo returns status
@ Status is “persistant”

@ cairo_status function returns error
state

@ APl “shuts down” when an error occurs

@ All cairo functions are benign (and well
defined) after any error.

Slide 65

Cairo ‘Fﬁ
December 30, 2003 =

Cairo Error Example

void draw (cairo t *cr) {
cairo translate (cr, 50, 50);
basket (cr);
cairo restore (cr);
basket (cr);
if (cairo status (cr))
printf ("error %s\n", cairo status string(cr));

}

$ basket-error
error cairo restore without matching cairo save

Slide 66

Cairo
December 30, 2003

Slide 67

Cairo
December 30, 2003

Drawing Splines

@ Spline Outlines
@ Minkowski sum by convolution

@ Converting Bézier splines into line
segments

@ de Castlejau algorithm
@ Computing pens

@ Approximating an ellipse with a polygon
@ Filling the result

@ O(n) tessellation to trapezoids
@ The evolute

Slide 68

Cairo "i
December 30, 2003 =

Minkowski Sum

A+B={a+b|acA and beB|
Symmetrical

@ A formal method for stroking with a
pen

Slide 69

Cairo
December 30, 2003 =

de Castlejau

@ Paul de Castlejau invented Bézier
splines (but didn't publish)

@ Wrote algorithm for splitting splines

@ lterate until the polygon is within the
error tolerance

Slide 70

Cairo ‘Fﬁ
December 30, 2003 =

Polygonal Pens

@& Approximate ellipse with polygon
@ Compute number of vertices needed

[-]
' 2-flatness
arcsin(l—=—=—->)

@ Add extra vertices so that both caps
join normal to the end of the path

Slide 71

Cairo _
December 30, 2003 =

Convolution of Pen w/
Path

@ Hull of Minkowski sum
@ Piecewise combination of spline and

pen edges

Q _ (a) (b)

AR A

(d)

LI

(I
—_
e’

Cairo
December 30, 2003

Stroked Spline

Comparison
@ GhostScript @ cairo

Cairo
December 30, 2003 =

Cairo Wrap-up

@ cairo is a new library for 2D rendering
@ Output is device-independent

@ API is mostly OS-independent

@ “Full” text API requires OS-dependent font
code.

@ Several major projects are interested
& Gtk+
@ KDE
@ Mozilla
& Mono

Slide 74

Cairo
December 30, 2003

Credits

Carl Worth <cworth@east.isi.edu>
Owen Taylor <otaylor@redhat.com>

Chris Blizzard <b
Lyle Ramshaw <ly
Soorya Kuloor <s

izzard@mozilla.org>
e.ramshaw@hp.com>

Kuloor@verano.com>

Julien Boulnois <jboulnois@neo-rousseaux.org>
and many others

Slide 75

Cairo
December 30, 2003 =

=icalroi=

Keith Packard
Hewlett-Packard Company
Cambridge Research Laboratory
keithp@keithp.com
http://cairographics.org

Slide 76

