
Cairo
December 30, 2003

Slide 1

Cross-device Rendering for Vector Graphics

Keith Packard
Hewlett-Packard

Cambridge Research Laboratory
keithp@keithp.com

http://cairographics.org

Cairo
December 30, 2003

Slide 2

Cairo Tutorial Outline
Cairo origins

Why write a new graphics library

Architecture
Relationship with other projects

Examples
Demonstrating most of the cairo API

Drawing Splines
How cairo computes shapes

Wrap up

Cairo
December 30, 2003

Slide 3

Cairo Design Goals
PostScript rendering model

Porter Duff image compositing

Matching output on all devices

Elegant language binding

Operating system independent

Cairo
December 30, 2003

Slide 4

History
X Render Extension

Moves sophisticated geometry to client

Uses image compositing

Xr – Render based drawing library
Needs printing support

Needs non-Render support

Needs non-X support

Redefined Xr as Cairo
Device independent, portable rendering

Cairo
December 30, 2003

Slide 5

Cairo Architecture

Cairo
December 30, 2003

Slide 6

Target Rendering Systems
X Render Extension

Motivation for original Xr library

Core X graphics
Required for compatibility

In-memory images
For drawing applications

Windows, Mac OSX
Target applications are portable

OpenGL
Accelerated output on many systems

Cairo
December 30, 2003

Slide 7

2D Graphics
Document-centric

Lots of text

Lots of images and icons

Few large geometric figures

Tightly coupled with printing
Fonts and graphics must match across
output devices

Minimal animation
Performance insensitive

Incremental screen updates

Cairo
December 30, 2003

Slide 8

2D Applications
Incremental update

Off-screen rendering
Combination of many parts

Orthographic
Lots of rectilinear elements

Very few rotated objects

Multiple output device support
Screen, printer, image files

Operating system independent
Applications don't want to be tied down

Cairo
December 30, 2003

Slide 9

3D Graphics
Physical-world Centric

Lots of geometry

Lots of textures

Minimal text

Rarely printed
Cross-device equivalence not important

Animated
Performance sensitive

Redraw entire scene each frame

Cairo
December 30, 2003

Slide 10

2D Applications on 3D API
Off-screen drawing not well supported

GL provides pbuffers, but not in DRI

Device dependent
Rendering only on the screen

No printing support

Poor text support
Glyphs as textures, no explicit font support

Cairo
December 30, 2003

Slide 11

Cairo on 3D API
Cairo supports multiple back-ends

OpenGL layer has been implemented

Can provide window-system
independent accelerated rendering

Reasonable performance requires p-
buffers

Cairo
December 30, 2003

Slide 12

PostScript Graphics Model
Stateful

State manipulation functions don't draw

Drawing functions don't change state

State can be saved/restored in one call

Paths
Construct path out of simple shapes

Stroke, fill or clip

Affine transformations
Scale, rotate, translate and shear

Cairo
December 30, 2003

Slide 13

Choosing PostScript
Well adopted standard

PostScript, PDF, Adobe Illustrator, ...

Easy to use
Functions take few arguments

Operations are largely orthogonal

Very capable
SVG port was straightforward

Cairo
December 30, 2003

Slide 14

Paths
Sequence of lines and Bézier splines

Constructed incrementally

Can be stroked or filled

Pen transformed at stroke time

Cairo
December 30, 2003

Slide 15

Text
Two kinds of font selection

“Toy” API for demos – family/style/slant

Real API uses platform specific font
matching.

Two kinds of glyph selection
Unicode (UTF-8) for simple applications

Glyph indices for complex layout

Two kinds of output
Convert to paths

Draw directly

Cairo
December 30, 2003

Slide 16

Related Projects

Cairo
December 30, 2003

Slide 17

Related Projects
Output Devices:

X Render Extension

OpenGL

Text
Xft library

Fontconfig

SVG
libsvg

libsvg-cairo

Cairo
December 30, 2003

Slide 18

X Render Extension
X Extension for accelerated graphics

Based on image compositing

Trapezoids for geometry

Special support for text

Provides full cairo support

Cairo
December 30, 2003

Slide 19

OpenGL
Hardware accelerated compositing

Hardware accelerated triangles

Limited text support

With pbuffers, provides full cairo
support

Cairo
December 30, 2003

Slide 20

Xft Library
Just the text 'mam

Connects FreeType font library with X

Uses Render extension where available

Uses FontConfig

Cairo
December 30, 2003

Slide 21

FontConfig library
Font management for Linux

Configuration – installation and selection

Customization – preferences and
localization

No rendering, just naming

Not X specific

Cairo uses FontConfig on Linux
systems

Cairo
December 30, 2003

Slide 22

Scalable Vector Graphics
SVG 1.1 is a W3C Recommendation

XML based file format

Vector graphics using hierarchical
structured representation

Includes animation and gradients

Pixelization is device specific

Cairo
December 30, 2003

Slide 23

Librsvg/libsvg
librsvg

Gnome2 SVG library

libart based – no acceleration

libsvg
Generic SVG library

Largely copied from librsvg

Uses an abstract rendering interface

Cairo
December 30, 2003

Slide 24

libsvg-cairo
Expresses libsvg interface to cairo

Can embed SVG graphics in
applications

Can load SVG files from disk

Cairo
December 30, 2003

Slide 25

SVG Example

Cairo
December 30, 2003

Slide 26

Cairo API and Examples

Cairo
December 30, 2003

Slide 27

Cairo API
Paths

construction

filling, stroking

Images
loading from disk

transforming

using as pattern

Text
Simple API example

Cairo
December 30, 2003

Slide 28

Rendering in Memory
#define STRIDE (WIDTH * 4)

char image[STRIDE*HEIGHT];

main (void) {
cairo_t *cr = cairo_create ();

cairo_set_target_image (cr, image,
 CAIRO_FORMAT_ARGB32,
 WIDTH, HEIGHT, STRIDE);
draw (cr);
write_png_argb32 (image, OUTPUT_FILE,

 WIDTH, HEIGHT, STRIDE);
}

Cairo
December 30, 2003

Slide 29

Rendering to X
int main (void) {

cairo_t *cr = cairo_create ();
Display *dpy = XOpenDisplay (0);
Window w = XCreateSimpleWindow (dpy,

 RootWindow (dpy, 0),
 0, 0, WIDTH, HEIGHT,
 0, 0, WhitePixel (dpy, 0));

XEvent ev;
XSelectInput (dpy, w, ExposureMask);
XMapWindow (dpy, w);
cairo_set_target_drawable (cr, dpy, w);
while (XNextEvent (dpy, &ev) == 0)

if (ev.type == Expose && !ev.xexpose.count)
draw (cr);

}

Cairo
December 30, 2003

Slide 30

Paths
Built from lines and splines.

cairo_move_to() set current point

cairo_line_to() draw line

cairo_curve_to() draw Bézier spline

cairo_close_path() draw line to start

Can also be built from glyphs

cairo_text_path() path from UTF-8

cairo_glyph_path() path from glyphs

Part of graphics state

cairo_save()/cairo_restore() affect path

Cairo
December 30, 2003

Slide 31

Using Paths
Stroke or Fill

cairo_stroke walks path outline with pen

cairo_fill paints interior of path

both operations consume the path,
resetting the current path to empty

Clip
cairo_clip intersects interior of path with
current clip

Convert path to stroked version
not yet named

Cairo
December 30, 2003

Slide 32

Path Example
void basket (cairo_t *cr) {

cairo_move_to (cr, 10, 10);
cairo_line_to (cr, 510, 10);
cairo_curve_to (cr, 410, 200, 110, 200,

 10, 10);
}

Cairo
December 30, 2003

Slide 33

Stroking Paths
Elliptical pen (line width radius)

Join styles
CAIRO_LINE_JOIN_MITER with limit

CAIRO_LINE_JOIN_BEVEL

CAIRO_LINE_JOIN_ROUND uses pen

Cap styles
CAIRO_LINE_CAP_BUTT

CAIRO_LINE_CAP_ROUND

CAIRO_LINE_CAP_SQUARE

Cairo
December 30, 2003

Slide 34

Stroke Example

void draw (cairo_t *cr) {
basket (cr);
cairo_set_line_width (cr, 8);
cairo_set_rgb_color (cr, 0, 0, 0);
cairo_stroke (cr);

}

Cairo
December 30, 2003

Slide 35

Closing the Path
cairo_close_path

Draws a line (if necessary) to the start
of the path

Draws a join from that line to the first
element of the path

Cairo
December 30, 2003

Slide 36

Close Path Example
void basket (cairo_t *cr) {
 cairo_move_to (cr, 10, 10);
 cairo_line_to (cr, 510, 10);
 cairo_curve_to (cr, 410, 200, 110, 200,
 10, 10);
 cairo_close_path (cr);
}

Cairo
December 30, 2003

Slide 37

Caps and Joins
cairo_set_line_cap

CAIRO_LINE_CAP_BUTT

CAIRO_LINE_CAP_ROUND

CAIRO_LINE_CAP_SQUARE

cairo_set_line_join
CAIRO_LINE_JOIN_BEVEL

CAIRO_LINE_JOIN_ROUND

CAIRO_LINE_JOIN_MITER

Cairo
December 30, 2003

Slide 38

Caps and Joins Setup
void vee_path (cairo_t *cr) {
 cairo_move_to (cr, 0, 0);
 cairo_line_to (cr, 1, 1);
 cairo_line_to (cr, 2, 0);
}
void vee(cairo_t *cr, cairo_line_cap_t cap,
 cairo_line_join_t join) {
 cairo_translate (cr, 0, 2);
 cairo_set_line_cap (cr, cap);
 cairo_set_line_join (cr, join);
 cairo_set_line_width (cr, 1);
 cairo_set_rgb_color (cr, 0, 0, 0);
 vee_path (cr); cairo_stroke (cr);
 cairo_set_line_width (cr, 0.05);
 cairo_set_rgb_color (cr, 1, 1, 1);
 vee_path (cr); cairo_stroke (cr);
}

Cairo
December 30, 2003

Slide 39

Caps and Joins Example
void draw (cairo_t *cr) {

cairo_scale (cr, 50, 50);
cairo_translate (cr, 1, -1);
vee (cr, CAIRO_LINE_CAP_BUTT, CAIRO_LINE_JOIN_BEVEL);
vee (cr, CAIRO_LINE_CAP_ROUND, CAIRO_LINE_JOIN_ROUND);
vee (cr, CAIRO_LINE_CAP_SQUARE, CAIRO_LINE_JOIN_MITER);

}

Cairo
December 30, 2003

Slide 40

Filling Paths
Closes path with line_to if necessary

line drawn from current point to last
move_to location

Fills interior

Even/odd or winding fill rules

Cairo
December 30, 2003

Slide 41

Fill Example
void draw (cairo_t *cr) {

basket (cr);
cairo_set_rgb_color (cr, .8, .1, .1);
cairo_fill (cr);

}

Cairo
December 30, 2003

Slide 42

Fill and Stroke
cairo_save/cairo_restore preserve path

Could just walk the figure twice

Current color is used for stroke and fill

Cairo
December 30, 2003

Slide 43

Fill and Stroke Example
void draw (cairo_t *cr) {

basket (cr);
cairo_save (cr);
cairo_set_rgb_color (cr, .8, .1, .1);
cairo_fill (cr);
cairo_restore (cr);
cairo_set_rgb_color (cr, 0, 0, 0);
cairo_set_line_width (cr, 8);
cairo_stroke (cr);

}

Cairo
December 30, 2003

Slide 44

Affine Transformations
Single matrix combines rotation,
translation, scale and shear

Non-projective transformations
Pen doesn't change shape along the stroke

Transformations are cumulative
translate, scale != scale, translate

Cairo
December 30, 2003

Slide 45

Affine Transform Example
void draw (cairo_t *cr) {
 basket (cr);
 cairo_translate (cr, 50, 50);
 cairo_rotate (cr, 30.0 * M_PI / 180);
 cairo_scale (cr, .5, .5);
 basket (cr);
 cairo_set_rgb_color (cr, 0, 0, 0);
 cairo_set_line_width (cr, 8);
 cairo_stroke (cr);
}

Cairo
December 30, 2003

Slide 46

Even/Odd vs Winding
Even/Odd counts edges, fills when odd

Winding counts up for clockwise edges,
down for counterclockwise, fills when !
zero

Cairo
December 30, 2003

Slide 47

Combining Images
Cairo memory surfaces are images

cairo_show_surface paints one surface
into another

Transformed through matrix

No projective transforms yet

Cairo
December 30, 2003

Slide 48

Loading an Image File

cairo_surface_t *
dog_surface (int *widthp, int *heightp)
{
 int stride;
 char *buffer;
 buffer = read_png_argb32 ("dog.png",
 widthp, heightp, &stride);
 return cairo_surface_create_for_image (
 buffer, CAIRO_FORMAT_ARGB32,
 *widthp, *heightp, stride);
}

Cairo
December 30, 2003

Slide 49

Image Example
void draw (cairo_t *cr) {

int w, h;
cairo_surface_t *dog;
dog = dog_surface (&w, &h);
cairo_move_to (cr, 0, 0);
cairo_show_surface (cr, dog, w, h);

}

Cairo
December 30, 2003

Slide 50

Image Transformation
void draw (cairo_t *cr) {

int w, h;
cairo_surface_t *dog;
dog = dog_surface (&w, &h);
cairo_translate (cr, 100, 0);
cairo_scale (cr, 1, .5);
cairo_rotate (cr, 30 * M_PI / 180.0);
cairo_show_surface (cr, dog, w, h);

}

Cairo
December 30, 2003

Slide 51

Resampling Modes
Nearest Neighbor Bilinear

Interpolation

Cairo
December 30, 2003

Slide 52

Patterns
Apply one surface as pattern on
another

Pattern transformed through source
surface matrix

Patterns may repeat

Cairo
December 30, 2003

Slide 53

Pattern Example

void draw (cairo_t *cr) {
int w, h;
cairo_surface_t *dog;
dog = dog_surface (&w, &h);
basket (cr);
cairo_set_pattern (cr, dog);
cairo_fill (cr);

}

Cairo
December 30, 2003

Slide 54

Pattern Transformations
Source surface holds matrix

Constructed with matrix operations

Some thought to changing this API
Need to add projective transformations

May want procedural patterns

Cairo
December 30, 2003

Slide 55

Pattern Transform
void draw (cairo_t *cr) {

int w, h;
cairo_surface_t *dog = dog_surface (&w, &h);
cairo_matrix_t *matrix = cairo_matrix_create ();
cairo_matrix_rotate (matrix, .8);
cairo_matrix_translate (matrix, 30, -150);
cairo_surface_set_matrix (dog, matrix);
cairo_set_pattern (cr, dog);
basket (cr); cairo_fill (cr);

}

Cairo
December 30, 2003

Slide 56

Gradients
No primitive gradients in cairo

Implemented as patterns

Bilinear interpolation smooths result

Future API may include more
Procedural patterns

Triangular patches

Cairo
December 30, 2003

Slide 57

Gradient Setup
void p (cairo_t *cr, double x, double r, double g, double b){
 cairo_set_rgb_color (cr, r, g, b);
 cairo_rectangle (cr, x, 0, 1, 2);
 cairo_fill (cr);
}

void fill_gradient (cairo_t *cr, cairo_surface_t *g)
{
 cairo_save (cr);

 cairo_set_target_surface (cr, g);

 p (cr, 0, 1, 0, 0);
 p (cr, 1, 0, 1, 0);
 p (cr, 2, 0, 0, 1);

 cairo_restore (cr);
}

Cairo
December 30, 2003

Slide 58

Gradient Creation
cairo_surface_t *
create_gradient (cairo_t *cr, double width, double height)
{

cairo_surface_t *g;
cairo_matrix_t *matrix = cairo_matrix_create ();
cairo_surface_t *t = cairo_get_target_surface (cr);

g = cairo_surface_create_similar(t, CAIRO_FORMAT_ARGB32,
 3, 2);

cairo_matrix_scale (matrix, 2.0 / width, 1.0 / height);
cairo_surface_set_matrix (g, matrix);
cairo_surface_set_filter (g, CAIRO_FILTER_BILINEAR);
cairo_matrix_destroy (matrix);

fill_gradient (cr, g);
return g;

}

Cairo
December 30, 2003

Slide 59

Gradient Example

void draw (cairo_t *cr) {
 cairo_surface_t *grad;
 grad = create_gradient (cr, 500, 150);
 basket (cr);
 cairo_set_pattern (cr, grad);
 cairo_fill (cr);
}

Cairo
December 30, 2003

Slide 60

Text
Font selection separate from text
drawing.

Current implementation provides only
“toy” font selection API.

Arguing over text transformation
system:

Do we want a separate glyph
transformation matrix?

Postscript uses one matrix

Cairo
December 30, 2003

Slide 61

Font Selection
API has been replaced recently

“Toy” font selection API
Includes specification for family, weight
and slant.

No facilities for listing available families

“Full” API
Exposes native OS font objects

Allows full access to underlying font
information.

Cairo
December 30, 2003

Slide 62

“Toy” Text API
Simple font selection

family, weight, slant

OS independent

No font listing support

UTF-8 text drawing and extents
functions

Still supports full font transformations

Cairo
December 30, 2003

Slide 63

“Toy” Text Example
void draw (cairo_t *cr) {
 cairo_select_font (cr, "",
 CAIRO_FONT_SLANT_NORMAL,
 CAIRO_FONT_WEIGHT_NORMAL);
 cairo_scale_font (cr, 72);
 cairo_set_rgb_color (cr, 0, 0, 0);
 cairo_move_to (cr, 20, 100);
 cairo_show_text (cr, "Hello, world!");
}

Cairo
December 30, 2003

Slide 64

Error Handling in C
C has no exceptions

Checking each return is tedious

C programmers rarely bother

Lots of broken programs result

Cairo
December 30, 2003

Slide 65

Cairo Error Handling
Cairo returns status

Status is “persistant”

cairo_status function returns error
state

API “shuts down” when an error occurs

All cairo functions are benign (and well
defined) after any error.

Cairo
December 30, 2003

Slide 66

Cairo Error Example
void draw (cairo_t *cr) {
 cairo_translate (cr, 50, 50);
 basket (cr);
 cairo_restore (cr);
 basket (cr);
 if (cairo_status (cr))
 printf ("error %s\n", cairo_status_string(cr));
}

$ basket-error
error cairo_restore without matching cairo_save
$

Cairo
December 30, 2003

Slide 67

Cairo Internals

Cairo
December 30, 2003

Slide 68

Drawing Splines
Spline Outlines

Minkowski sum by convolution

Converting Bézier splines into line
segments

de Castlejau algorithm

Computing pens
Approximating an ellipse with a polygon

Filling the result
O(n) tessellation to trapezoids

The evolute

Cairo
December 30, 2003

Slide 69

Minkowski Sum

Symmetrical

A formal method for stroking with a
pen

AB={ab ∣a∈A and b∈B}

Cairo
December 30, 2003

Slide 70

de Castlejau
Paul de Castlejau invented Bézier
splines (but didn't publish)

Wrote algorithm for splitting splines

Iterate until the polygon is within the
error tolerance

Cairo
December 30, 2003

Slide 71

Polygonal Pens
Approximate ellipse with polygon

Compute number of vertices needed

Add extra vertices so that both caps
join normal to the end of the path

⌈ 
arcsin1−2⋅flatness

width 
⌉

Cairo
December 30, 2003

Slide 72

Convolution of Pen w/
Path

Hull of Minkowski sum

Piecewise combination of spline and
pen edges

Cairo
December 30, 2003

Slide 73

Stroked Spline
Comparison

GhostScript cairo

Cairo
December 30, 2003

Slide 74

Cairo Wrap-up
cairo is a new library for 2D rendering

Output is device-independent

API is mostly OS-independent
“Full” text API requires OS-dependent font
code.

Several major projects are interested
Gtk+

KDE

Mozilla

Mono

Cairo
December 30, 2003

Slide 75

Credits

Carl Worth <cworth@east.isi.edu>
Owen Taylor <otaylor@redhat.com>
Chris Blizzard <blizzard@mozilla.org>

Lyle Ramshaw <lyle.ramshaw@hp.com>
Soorya Kuloor <skuloor@verano.com>

Julien Boulnois <jboulnois@neo-rousseaux.org>
and many others

Cairo
December 30, 2003

Slide 76

Keith Packard
Hewlett-Packard Company

Cambridge Research Laboratory
keithp@keithp.com

http://cairographics.org

