PROFILING
DESKTOP

APPS

SPARE THE ROD
SPOIL THE APP

\ %

PROFILING IS A MIX OF
SCIENCE
AND
DETECTIVE WORK

ENGAGE
THE COMMUNITY

Who Profiles Applications ?

» Software developers
» System architects
 Benchmarkers

Profiling life cycle

Prepare Environment

!

Track down and solve

|

Upstream acceptance

Stage 1.
Preparing environment

Simulate “production” environment
Reliable hardware
Eliminate Variables

Disable disruptive services

- CRON
- Log Rotation
- CPUSPEED

Stage 2.

Track down and Solve

Define a goal

»f

reate and automate

a test case

>

Build a hypothesis

;

|

Attempt a solution

Run test case
Compare stats

Stage 2.
Track down and Solve

* Hints:
- Work with community members

- Consistency — RESET BETWEEN TESTS
- 80/20 rule

Stage 3.
Upstream Acceptance

* Present objective case to dev community
* Share test case

* Share code

* Accept criticism

* Accept failure

* Try, try again

General tools of the trade

* Traditional monitoring tools:

- top, ps, /proc interface
- systat (vmstat, iostat)
- strace, Itrace

- free

* Not fine grained or “immediately”
accurate.

* Problems may not be readily exposed

Tool of the trade - valgrind

« Memory misuse
* Thread misuse
 Cache Profiler

Tool of the trade - oprofile

Sample based

Uses hardware performance counters
Profile application and kernel code
Generate instruction level profiles

Pinpoint functions that need to be
optimized

Tool of the trade - SystemTap

* Trace, monitor, and observe

* Able to probe kernel-space applications
* Supports dynamic and static probing

* User-space instrumentation in the works
* Free/Open Source Software (GPL)

Tool of the trade - SystemTap

Tool of the trade - SystemTap

Probe
+ Script

1. Parse

v
#. Elaboratm Tapset

¢ Library

3. Translat

¢ Probe
4. Compile/> LKM
5. Run

¢ Probe
Get output »Output

B o#

a8

Tool of the trade - SystemTap

global reads Global variables
probe begin {
printf (“probe begins\n”) e Built-in functions
}
probe syscall.read { * Associative arrays
reads[execname ()] <<< count
} . L * Aggregation
probe en .
foreach (progname in reads) { operat|ons clgle

printf (“%s reads: %d, “, progname, functions
@count (reads [progname])) ,
printf (“total bytes: %d, avg: %d\n”, ° Pre-defined
@sum(reads [progname]), tapsets
@avg (reads [progname]))
} Probe entry and
termination call-

backs

Tool of the trade - SystemTap

global reads Global variables
probe begin {
printf (“probe begins\n”) Built-in functions
}
probe syscall.read { e Associative arrays
reads [execname ()] <<< count
} * Aggregation

probe end { :
foreach (progname in reads) { operqtmns and
printf (“%s reads: %d, “, progname, functions
@count (reads [progname])) .
printf (“total bytes: %d, avg: %d\n”, ° Pre-defined
@sum(reads [progname]), ta psets
@avg (reads [progname]))
) * Probe entry and
termination call-

backs

Tool of the trade - SystemTap

global reads * Global variables
probe begin {

printf (“probe begins\n”) e Built-in functions
}
probe { o

execname () | <<< count

) — * Aggregation
probe en .

foreach (progname in reads) { operatlons clgle

printf (“%s reads: %d, “, progname, functions
@count (reads [progname]))

printf (“total bytes: %d, avg: %d\n”, °
@sum(reads [progname]),
@avg (reads [progname]))

} Probe entry and
} termination call-
backs

Tool of the trade - SystemTap

global reads Global variables
probe begin {
printf (“probe begins\n”) e Built-in functions
}
probe syscall.read { e Associative arrays
reads [execname ()] <<< count
} * Aggregation

probe end {
foreach (progname in reads) {
printf (“%s reads: %d, *, progname,
(reads [progname])) :
printf (“total bytes: %d, avg: %d\n”, ° Pre-defined

operations and

reads [progname]), tapsets
(reads [progname]))
} * Probe entry and
} termination call-

backs

Tool of the trade - SystemTap

global reads

}

{
printf (“probe begins\n”)

probe {

}

execname () <<< count

{

foreach (progname in reads) {

printf (“%s reads: %d, *, progname,

(reads [progname]))
printf (“total bytes: %d, avg:
reads [progname]),
(reads [progname]))

$d\n”,

Global variables

Built-in functions

Aggregation
operations and

Tools that we avoid - dtrace

* Similar to SystemTap but implemented
differently; has its own D language

* Trace, monitor, and observe

* Able to probe both user/kernel-space
apps

* Predefined probe points in
kernel/applications

 CDDL incompatible with GPL

- Cannot mixed or linked together
— Cannot redistribiite or derive works

Tools that we avoid - dtrace

* Similar to SystemTap but implemented
differently; has its own D language

* Trace, monitor, and observe
* Predefined probe points

» Able to probe both user/kernel-space
apps
 CDDL '= GPL

e Solaris && 'Linux

Spyglass

* Spyglass \Spy"glass’\ (-gl[.als "), n.
A small telescope for viewing distant
terrestrial objects. [1913 Webster]

» Consists of a profiler and graphical
plotting tool

* Profiler can call SystemTap, shell script,
vmstat, etc, save logs, and visualize it
with Spyglass

* Very early alpha; still in development

Some screenshots:

Spyglass Very Early Alpha 0.02

File Edit View Help

Lt

Add Test

= System tap 1

=7 System tap 2

Spyglass

polling &8 secs)

readssurites while running (60 secs)

vpnoi

reads-surites~ioctl (connect and disconnect>
T

'Mouse pointer is at: HH:MM:S5.NNNN

Best fit |§| ‘§|

Pead;
writes
ioctls

reads (run 22
writes (run &2
ioctls (run 22

Success Stories

* libtinymail
* Gnome clock applet

War Stories

 UDP datagram loss
* SCSI request size mismatch
* Top I/O users by userid

UDP Datagram Loss

* Problem:

- Customer wanted to see UDP statistics for
both sending and receiving sides and how
many UDP datagrams were dropped.

- netstat -su don't show how many datagrams
are dropped when sending.

- |ptraf don't show statistics on datagram loss
* Solution:
- Write a simple SystemTap script to find out

UDP Datagram Loss

Thanks to Eugene Teo from Red Hat

global udp_out, udp_outerr, udp_in, udp_inerr, udp_noport
probe begin {
printf("%$11ls %10s %10s %10s %10s\n",
"UDP_out", "UDP_outErr", "UDP_in", "UDP_inErr", "UDP_noPort")
}
probe kernel.function("udp_sendmsg") .return {
Sreturn >= 0 ? udp_out++ : udp_outerr++
}
probe kernel.function ("udp_qgqueue_rcv_skb") .return {
Sreturn == 0 ? udp_in++ : udp_inerr++
}
probe kernel.function("icmp_send") {
/* icmp_send(skb, ICMP_DEST UNREACH, ICMP_PORT_UNREACH, 0); /
if ($type == 3 && $code == 3) {
if ($skb_in->nh->iph->protocol == 17) /* UDP */
udp_noport++
}
}
probe timer.ms (1000) {
printf("%$1lls %10s %10s %10s %10s\n",
"UDP_out", "UDP_outErr", "UDP_in", "UDP_inErr", "UDP_noPort")

UDP Datagram Loss

$./udpstat.stp
UDP_out UDP_outErr

G
O
I"U
-
o]

UDP_inErr UDP_noPort

OO JJJJO0O01U1ldbOO
P OOOOOOOO0OO0OO0OO0O00O oo
OCOODMNMNMNDMNDNRPPRPPRPRPPPOOOOO
cNoNeoNoloNolNoNoNohoNoNoleolNolNolNo)
DOYOONDNUIDNDDNNDNOOOOOOOOo

SCSI Request Sizes

* Problem:

- In a benchmark run, we observed a mismatch
between expected and actual SCSI I/O counts

* Solution:

- Create a simple SystemTap script to track the
counts and sizes of SCSI requests to a
specific device

SCSI Request Sizes

Thanks to Allan Brunelle from HP

global rgs, host_no, channel, id, lun, direction
probe begin {
host_no = 0
channel =1
id =1
lun = 0
direction = 1 /* write */
}
probe scsi.iodispatching {
if (data_direction != direction) next
if (lun != lun) next
if (id !'= dev_id) next
if (channel !'= channel) next
if (host_no !'= host_no) next
rgs[req bufflen / 1024]++
}
probe end {
printf ("ReqgSz (KB) \t#Reqgs\n")
foreach (rec+ in rgs)
printf ("%$8d\t%5d\n", rec, rgs[rec])

SCSI Request Sizes

$./scsi_req.stp
ReqgSz (KB) #Regs

4

8

12

28

44

88

164

204

216

308

448

508

512

ORRRPRRPRREPRPRREPRPERREPRERNDW

w

Top I/0 Users by Userid

* Problem:

- Which user is doing the most I/O on the
system? lostat does not provide statistics on
a per user basis

* Solution:

- Write a simple SystemTap script that probes
file system read() and write() and records the
bytes of I/O for each user

Top I/O Users by Userid

Thanks to Mike Grundy and Mike Mason from IBM

global reads, writes
function print_top () {
cnt=0
printf ("%-10s\t%10s\t%15s\n", "User ID", "KB Read", "KB Written")
foreach (id in reads-) {
printf ("%$-10s\t%10d\t%15d\n", id, reads[id]/1024, writes[id]/1024)
if (cnt++ == 5)
break
}
delete reads
delete writes
}
probe kernel.function("vfs_read") {
reads[sprintf ("%d", uid())] += $count

}

probe kernel.function("vfs_write") {
writes[sprintf ("%d", uid())] += S$count

}

probe timer.ms (5000) {
print_top ()
}

Top I/0 Users by Userid

$./uid-iotop.stp

User ID KB Read KB Written
504 14237 3163
505 11208 929
502 11175 889
503 12469 866

0 1778 1831

More War Stories

* http://sourceware.org/systemtap/wiki/WarS
tories

To find out more

* Eugene Teo -
* Wade Mealing -

* http://sourceware.org/systemtap/tutorial.
ofelj

* Or come talk to us afterwards!

mailto:eugeneteo@gmail.com
mailto:wmealing@gmail.com

