You are here
v

linux.conf.au
SYDNEY 2007

Automatic Page Migration for Linux
[A Matter of Hygiene]

Lee T. Schermerhorn
HP/Open Source & Linux Organization



"All architectural design involves teasing apart a problem by
looking at the needs from as many directions as possible, until it
reveals the structure within itself that the system designer can
use to defeat it."

-- Alan Carter, "The Programmer's Stone"
http://www.reciprocality.org/Reciprocality/rO/index.html

18Jan07 Automatic Page Migration 2



Why NUMA?

* To provide sufficient memory/IO/interconnect bandwidth
to achieve scaling for systems based on modern, high-
performance processors

- multiple "low-cpu count" SMP [SMT] nodes or cells with
"sufficient bandwidth" for local cpus + local IOA + inter-
node interconnect

- Low latency inter-node interconnect of sufficient
bandwidth to handle off-node traffic.
* Possibly hierarchy of these for larger systems

- "lIt's the bandwidth, stupid!"
* latency contributes to decrease in effective bandwidth
» under contention, latency = f(load) = low or even inverse
scaling

- Heavily dependent on locality for a "win", similar to

processor caches

18Jan07 Automatic Page Migration



CPUs + DMA +
Incoming remote accesses [CPU + DMA]

Memory Consumer Bandwidth:

A Node/Cell

Total Memory

Bandwidth

18Jan07

Automatic Page Migration

Both a consumer and provider

SMT|SMT SMT | SMT SMT |SMT SMT|SMT 10 Inter-node
Adapter port
cache cache caghe cacihe
/
I
Memory Memory Memory Memory
Bank Bank Bank Bank

of

Memory Bandwidth



Single Level Interconnect

18Jan07 Automatic Page Migration



18Jan07

Multi-Level Interconnect

Automatic Page Migration



An Approach to NUMA Support

* Enhance kernel to "do the right thing":
- reasonable [non-pathological] default behavior
- Tunable behavior for various applications/loads

* Provide hints, application specific information to kernel:
- Inheritable or "other-directed" behavior/options, settable
by command line tools — e.g., numactl — for unmodified
applications
- APIs [system calls] for NUMA-aware applications and

language run-time environments. Requires source
modification or, at least, recompile/relink.

18Jan07 Automatic Page Migration



Evolution of Linux NUMA Support

* Node-aware mm; per node page pools and daemons, ...
- "reasonable default behavior" — local allocation

* Mempolicy: by Andi Kleen, et al
- APIs — mbind(), et al —and command line tool — numactl

* Task Migration: NUMA awareness in Scheduler Domains

- all that remains of Eric Focht's early work on "Node Affine
NUMA Scheduler"
* cpusets: resource/behavior "container" mechanism by
Simon Derr and Paul Jackson

* Direct, synchronous page migration by Christoph Lameter

* NUMA-aware kernel memory allocations
- SLAB infrastructure by Christoph Lameter

- Increasing kernel subsystem use thereof
18Jan07 Automatic Page Migration 8



Performance Impact of NUMA Features

* AIM7 benchmark:
- many [very many] tasks

- exercise kernel scalability more than user-space NUMA
effects

* HP rx8620 platform:
- 16 cpu [ia64], 4 node system

- hardware memory interleaving across all nodes at cache-line
granularity [SMP mode] vs all "cell local memory" [NUMA
mode]

* 2.6.5+ kernel [SLES9] vs 2.6.16+ kernel [SLES10]
- "NUMA Penalty" = "NUMA Benefit"

18Jan07 Automatic Page Migration 9



AlM7

/ia64/rx8620/ext3/fserver/

20000 20000
15000 15000
_E
= 5
E
g
o
= i
5 10000 | 10000
2 &
o
=
=]
=
h 1
5000 5000
o—o /SLES10GA/SMP/18/84/144/
E—E /SLES10GA/Numa/16/64/144/
o—=2 /SLES9SP3/SMP/16/64/144/
! a—a [SLES9SP3/Numa/16/64/144/
0
5000 10000 15000 20000

Load (jobs)

18Jan07 Automatic Page Migration 10



Application Performance:
Room for Improvement

* Applications that are sensitive to NUMA locality effects:

- large memory footprint with [relatively] high cache miss rate =
sensitive to effective memory bandwidth

- long lived; subject to load balancing

* Simulate using McAlpin Stream benchmark

- specifically designed to measure platform memory bandwidth =
bytes _moved / elapsed_time

- build with OpenMP extensions [Intel Compiler] to run on all nodes

- If all threads access local memory, we get to claim the sum of all
nodes' bandwidths

* Let the kernel have it's way — no affinity, no cpusets, ...
- run-to-run variability—apparently due to locality

— disruption of initial locality by inter-node load balancing
18Jan07 Automatic Page Migration 11



Stream Benchmark Threads & Memory
[OpenMP Decomposition]

# tniane phbbbd
5 kb TEEIY

18Jan07 Automatic Page Migration 12



Stream Benchmark Max Throughput Distribution

r«8620: 16 cpu/4 node ia64 NUMA -- 100 jobs x 10 runs/job
Sﬂ I I | I | I | I | I | I | I | I | I | I | I | I | I I

40 - —

)
S
!
|

Number of Runs
n
]
|
|

10— —

_ ...l.LJJJ_IJ.l.l.

go-oo 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000
Triad Throughput MB/sec [bucket width 500]

18Jan07 Automatic Page Migration 13



Dynamic Effects of Load Balancing

* Allow kernel to balance cpu loads:
- i.e., no explicit binding of OpenMP threads to cpus

 Run benchmark for sufficient time to allow a transient work
load to run

* Apply transient work load:
- 32-job [2 x # cpus] parallel kernel build

* Plot completion time for each "run" of stream benchmark

18Jan07 Automatic Page Migration 14



500 run stream with 32job kernel build
rk8620: 16cpu/4node |AB4 NUMA -- No Auto-Page Migration

1 I | [ |
B — Copy
— scale
0.8 add
— triad
.‘é‘
C U.E‘ [
3
@
m L
c
@
E04-
0.2+
0 ! I ! |
0 200 400

run number

18Jan07 Automatic Page Migration



What's Happening?
* Without "manual intervention”, optimal placement has
relatively low probability
- that probability decreases with increasing node count

* Even with near optimal initial placement, transient
workloads can destroy locality

* But, why not just bind tasks/threads to cpus/nodes?
- Standard practice in dedicated HPC environments, but:

- "absence of easy, fine-grained load balancing is a real
barrier to getting good scalability"

* "OpenMP in the Real World", Rob Thacker, Dept. of Physics,
Queens University

* http://www.sharcnet.ca/events/fw2004/slides/FW2004_Thacker.pdf
- Less acceptable in some environments ["enterprise”]

18Jan07 Automatic Page Migration 16


http://www.sharcnet.ca/events/fw2004/slides/FW2004_Thacker.pdf

Can the Kernel Help?

* The kernel is performing inter-node load balancing
- it knows when it's moving a task to a new node

* However, without extensive [expensive?] page reference
tracking, the kernel can't know which pages a task will
reference after migration

- especially true for multi-threaded programs

 Still, if the kernel could arrange for a task to self [auto]
migrate the pages it touches after inter-node migration,
locality can be restored

- at some cost, of course. Migration doesn't come for free.
* Enter automatic, lazy page migration

18Jan07 Automatic Page Migration 17



500 run stream with 32job kernel build
r8620: 16cpu/d-node IA64 NUMA -- Auto-Page Migration Enabled

1 | | ] |
B — Ccopy
— scale
0.8 add
— triad
_ B
=
w 0.6 — |
9
=
g L
a
=
o 0.4 1 |
£ | 1 l
B |’i||‘l “' .
|| ll | |I |1
0.2 !
|I .||
n i
0 ! | . I
0 200 400

run number

18Jan07 Automatic Page Migration



Automatic/Lazy Page Migration

 So, what is it? How does it work?

* Two major components [patch sets]:
* "migrate-on-fault” [a.k.a. "lazy page migration"]:
migrates a page in the fault path if:

* migrate-on-fault enabled [per cpuset]
* page has no ptes referencing it
* page's mapping has a "migratepage” op
* page location does not match policy.

* "auto-migrate": if enabled [per cpuset]

* marks task with "migrate pending" when load balancer
migrates task to a new node

* task "unmaps" [removes pte references from] all pages
controlled by "default" policy with "mapcount” < N [default

1].
* migrate-on-fault pulls them local on next touch

18Jan07 Automatic Page Migration 19



Page Migration in 2.6.19

 mbind() -- add MPOL_MF_MOVE][ _ALL] flags
- migrate pages in range to match specified policy

- w/0"'_ALL moves only pages with mapcount == 1 —i.e.,
currently referenced only by calling task's page table.

« migrate_pages(pid, maxnodes, srcnodes|], destnodes]])

- new syscall to move self or others if allowed by permissions
and cpuset constraints

- internally: migrate to_node() for each "source node"

e More internals:

- check _range() used by mbind() and migrate to _node() to
scan task's page table for pages eligible to migrate

- migrate_pages(): direct, synchronous migration of list of
pages collected by check range()

18Jan07 Automatic Page Migration 20



More 2.6.19 Migration Internals

* migrate_pages() — for each page in list:

- unmap_and_move() using get_new_page() allocation
function, passed in as arg to migrate_pages()

* unmap_and_movel()
- allocate new page; abort if fails
- try_to_unmap() with 'migration flag’
- move_to_new_page()
* move_to _new_page()
- If no mapping, invoke migrate_page() directly,

- else call mapping's migratepage operation, if any, else use
fallback migrate page()

- buffer_migrate_page() for pages with file system private data
attached.

18Jan07 Automatic Page Migration 21



Migrate on Fault Migration Additions

* mbind() —add MPOL_MF_LAZY modifier to' MOVE*

- Don't actually move pages; just "remove translations” [pte
references]

— migration occurs in fault path on next touch if page is
misplaced w/rt policy in faulting context

* Internally, after collecting pages via check range(), call
new function migrate_pages unmap_only() instead of
migrate _pages()

- push anon pages to swap cache if not already there

- try_to_unmap with "MIGRATE_DEFERRED" flag
* migrate_pages() now uses "MIGRATE_DIRECT" flag

18Jan07 Automatic Page Migration 22



Migration in Fault Path

* E.g., for anon pages: do_swap_pagel()

- under page lock, if migrate_on_fault enabled for faulting
task, call check migrate_misplaced page()

- static, in-line function if configured; else NULL macro

- If page_mapcount(page) == 0 and page's mapping has a
migratepage op,

* call mpol_misplaced() to check page location against policy;
returns target node if misplaced

* call migrate_misplaced_page(), if misplaced
— migrate_misplaced_page()
* allocate new page on target node: | GFP_WAIT +
GFP_THISNODE; if fails just return old page

* set up new page and call mapping's migratepage op with new
'faulting' flag

 adjust ref counts; free old page; return new page

18Jan07 Automatic Page Migration 23



Automatic Page Migration Additions

* |n most places where scheduler calls set_task cpu(), call
new check internode_migration()

- if automigration enabled for this task, and new cpu is on
different node, set current->migration_pending and
TIF_NOTIFY_RESUME thread_info flag

* On return to user space, in "notify_resume" handler, call
check _migrate_pending():

- no-op if SIGKILL pending

- If current->migrate_pending, call new function
auto_migrate_task_memory()

- calls migrate_to_node() with additional flags:

 '"AUTOMIGRATE — only scan vma's with default policy
 optionally, 'LAZY —'unmap_only() instead of migrate_pages()

18Jan07 Automatic Page Migration 24



Configurable Behavior

e At kernel build:

MIGRATE_ON_FAULT: depends on MIGRATION, selects
CPUSETS & SWAP

AUTO_MIGRATION: depends on MIGRATION, selects
CPUSETS

* Run-time, per cpuset:

18Jan07

migrate_on_fault: enable/disable; default == disable
auto_migration: enable/disable; default == disable

auto_migrate_interval: [seconds] —don't migrate task to
new node more often than this; default == 30 sec

auto_migrate_lazy: default ==direct migration

migrate_max_mapcount: threshold for selecting pages for
migration; default ==

Automatic Page Migration 25



Performance of Kernel Builds

* By itself, kernel build [-]32] does not see a win from
automatic migration:

2.6.19-rc6; avg & std devn for 10 runs

Real User System

No Patches 92.87 1099.97
2.18 1.01
with AutoMigration patches — disabled 92.42 1100.55
1.68 1.03
Migrate on Fault enabled 92.55 1099.64
1.79 0.73

Both Migrate on Fault and Automigration enabled 93.47 1098.05
1.83 0.86

18Jan07 Automatic Page Migration

65.15
0.26

65.36
0.44

75.01
0.61

/6
0.28

26



What's Happening?

« Statistics from [mmtrace] instrumented kernel— 32 job
parallel kernel build:

Migrate-on-Fault ~ Migrate-on-Fault  MoF + AutoMig

Only + Automigration  No Pg Cache Mig
Automatic task memory migrations 0 2714 2789
Pages scanned for migration 0 7065 13415
Pages selected for lazy mig 0 2525 7413
PTE Faults 7.26M 7.27TM 7.27TM
"No Page" Faults 3.76M 3.76M 3.76M
"Swap Page" Faults 0 2100 4266
"Anon Page" Faults 3.0M 3.0M 3.0M
Pages checked for misplacement 502K 504K 2749
Misplaced page migration attempts 346K 343K 2632
Misplaced page migrations successful 345K 342.5K 2632

18Jan07 Automatic Page Migration 27



What's Really Happening?

* QOut of 3.76M mapped file/page cache faults, ~0.5M were
found to have zero mapcount, and so were checked for
misplacement

* 346K of these were deemed to be "misplaced" and the
kernel attempted a migration. 99.7% of these attempts
succeeded.

* Examination of the traces showed many page cache
pages bouncing between nodes thousands of times.
* My conclusions:

- unconditionally migrating unreferenced file backed pages
may not be such a good idea

- consider replicating shared, read-only pages as future work
item [old patches exist from Virtual ron]

18Jan07 Automatic Page Migration 28



Migrating Anon Pages only
* Removed file page migration patch
— not run time configurable [yet]

2.6.19-rc6; avg & std devn for 10 runs
Real User System
No Patches 92.87 1099.97 65.15
2.18 1.01 0.26
with AutoMigration patches — disabled 92.42 1100.55 65.36
1.68 1.03 0.44
Migrate on Fault enabled 92.55 1099.64  75.01
1.79 0.73 0.61
Both Migrate on Fault and Automigration enabled 93.47 1098.05 /6
1.83 0.86 0.28
MoF and Automigration enabled -- anon pages only  91.27 1098.69 66.5
1 0.46 0.42

18Jan07 Automatic Page Migration

29



Kernel Builds on Heavily Loaded System

* Run kernel build [-j32] with parallel Stream benchmark [16
threads on 16¢pu system]:

- migrate anon pages only

2.6.19-rc6; avg & std devn for 10 runs

with AutoMigration patches — disabled

MoF and Automigration enabled -- anon pages only

Stream running; MoF/AutoMigration disabled

Stream running; MoF/AutoMigration enabled

18Jan07

Automatic Page Migration

Real User System
92.42 1100.55 65.36
1.68 1.03 0.44
91.27 1098.69 66.5
1 0.46 0.42
147.33 1179.71  93.76
2.6 4.02 1.91
120.94 1130.24  73.17
2.06 4.96 1.84

30



Status of the Patches

* Two separate, mostly independent, patch sets:
- migrate-on-fault
- automatic page migration
* "lazy" option depends on migrate-on-fault patch set
- both currently atop "mapped file policy" patch set
* Two related patch sets:
- memory policy for shared, mmap()ed files

— migration cache: pseudo-swap cache for lazy migration of
anon pages without backing storage

* Maintained "out-of-tree", up to date with -mm tree and
mainstream releases and release candidates

- little support for acceptance, even into -mm, when last
posted

* Available at: http:/free.linux.hp.com/~lts/Patches/PageMigration
18Jan07 Automatic Page Migration 31



* Including Mapped File Policy and Migration Cache Patch

Sets

18Jan07

ia64

No patches
+file policy
+mig on fault
+automig
+migcache
Total

x86 64

No patches
+file policy
+mig on fault
+automig
+migcache
Total

text
8174117
8178629
8184613
8190189
8197781

text
3818668
3820703
3823040
3825182
3828221

Atext

4512
5984
5576
7592
23664

Atext

2035
2337
2142
3039
9553

data

1600644
1600900
1601044
1601788
1602588

data

1116316
1116548
1116660
1117492
1118228

Adata

256
144
744
800
1944

Adata

232
112
832
736
1912

Size of Patches

bss
1472245
1472253
1472261
1472261
1472261

bss
1419912
1420040
1420040
1420040
1419912

Automatic Page Migration

Abss

o) O O 00 0o

Abss

128

-128

total
11247006
11251782
11257918
11264238
11272630

total

6354896
6357291
6359740
6362714
6366361

Atotal

4776
6136
6320
8392
25624

Atotal

2395
2449
2974
3647
11465

32



Testing Status

* Load/stress testing with Dave Anderson's [Red Hat]
"Unix System Exerciser" a.k.a. usex

* Overnight, over [long] weekends, ...

- 16cpu/4node and 64cpu/16node ia64 systems; 2 cpu/node
x86 64 system

* Patches hold up well:
- tests continue to run

- some issues in logs:

* floating point and alignment issues on ia64 from /usr/bin tests
— may not be related to patches

* race[s] in page cache migrate-on-fault
- fixed
- maybe moot?

18Jan07 Automatic Page Migration 33



Some References

e Ottawa Linux Symposium Linux Presentations:

* Matthew Dobson, Patricia Gaughen, Michael Hohnbaum, Erich Focht, "Linux
Support for NUMA Hardware", Proceedings of the Ottawa Linux Symposium,
Ottawa, Ontario, Canada, July 2003

http://archive.linuxsymposium.org/ols2003/Proceedings/All-Reprints/Reprint-Gaughen-OLS2003.pdf

* Ray Bryant and John Hawkes, "Linux Scalability for Large NUMA Systems",
Proceedings of 2003 Ottawa Linux Symposium, Ottawa, Ontario, Canada, July
2003.

http://archive.linuxsymposium.org/ols2003/Proceedings/All-Reprints/Reprint-Bryant-OLS2003. pdf

* Ray Bryant, Jesse Barnes, John Hawkes, Jeremy Higdon, and Jack Steiner,
"Scaling Linux to the Extreme", Proceedings of the 2004 Ottawa Linux Symposium,
Ottawa, Ontario, Canada, July 2004

* http://www.linuxsymposium.org/proceedings/LinuxSymposium2004_V1.pdf,
p133

* Christoph Lameter, "Local and Remote Memory: Memory in a
Linux/NUMA System”,

* http://kernel.org/pub/linux/kernel/people/christoph/pmig/numamemory.pdf

18Jan07 Automatic Page Migration 34


http://archive.linuxsymposium.org/ols2003/Proceedings/All-Reprints/Reprint-Bryant-OLS2003.pdf
http://www.linuxsymposium.org/proceedings/LinuxSymposium2004_V1.pdf

18Jan07

Any [time for] questions?

Automatic Page Migration

35



