
High Availability Clusters in Linux

Sulamita Garcia
EDS Unix Specialist

sulamita@linuxchix.org.br

What are clusters

● A set of computers working as one
● High Performance Computing

– Super computers
● Load Balance

– Easy way to improve responsiveness: less
delay

● High Availability
– Always responding

Why High Availability

● We all depend on digital systems
– From light to banks, any stop is a

nightmare
– Even e-mail communication can cost:

clients, time lines, productivity
● It is a plus in services

– Security also means availability and
failure recover

Failures

● There is always a possibility of error
● Failure: physical - electrical or

mechanical
● Error: a failure which affects the data,

changing a value
● Fault: a failure causes a crash or

freezes the system

High Availability

● Systems always online
● Classified by number of 9s

– 99,99%
– 99,999% <- majority
– 99,9999%...
– Suppliers always try improve this number

● Availability == 1 is hypothetical –
there is always a chance of failure

Ways to HA

● Fault tolerance software
– Avoiding failures to become errors and

errors become defects
– Complex and heavy

● Hardware
– Can perform many tasks
– Very expansive

High Availability

● Work with fault possibility
● Redundancy by hardware and control

by software
● Usual hardware
● Machines recover themselves

automatically

Identifying the
environment
● A set of resources to take care of
● Tests to be run frequently
● Actions to run if these tests to fail
● Tools to check and manage the

environment

Resources

● A web server
● A link
● Network card state
● A storage unit

Actions or tests

● Reload the service
● Reboot the machine
● fsck the filesystem
● Configuration of alternative routes
● Notification to admin by pager, mail

High Availability -
Contingency
● Raid
● Redundant energy font
● Two Internet link
● Two network cards
● Data Replication
● Configuration replicating
● Replication of user information...

Replication data

● Depends on data
● Does it change to much?
● Does it have much access?
● Can you loose some data?
● How much load the machine can have?

DRBD

● Data replication block device
– Block replication: don't understand data

● Replicates partitions, but not files nor
directories

● Mirroring: two nodes at time
● Data immediately replicated: highly

reliable

DRBD

● Metadata: 128Mb for mirroring
– Separate partition: indexing
– Or shrink your data to grarantee 128Mb

to drbd
● Separate link connection
● Any filesystem: ext3, reiserfs, etc
● Load: must be a well designed project
● Great project, few people: if you can

contribute

Databases

● Drbd replicates blocks: don't know
about registers

● A wrong register can crash entire
database

● Most databases already has a way to
do it
– Oracle, LDAP(directory service - slurpd)

● Master -> slaves
– Share the load

Databases

● Mysql:
– Master: my.cnf

[mysqld]

log-bin

server-id=1
– Slaves:

mysql>CHANGE MASTER TO MASTER_HOST='SERVER',

MASTER_USER='REPLICATION',
MASTER_PASSWORD='MYPASS',
MASTER_LOG_FILE='SERVER-BIN.00001',
MASTER_LOG=211;

mysql> START SLAVE;

Another way

● Rsync
– Replicates files and directories
– Updates
– Scheduling
– Low load
– Permission: users, machines
– Can loose some data

Monitoring

● Heartbeat
– Check other machine's availability
– Define primary/secondary
– When a primary does not answer, the

secondary takeovers the services and
resources

– Take care of to small times: machines can
fight over services, that's not good

Mon

● Small
● Many monitors and alerts

– Monitor check a service
– Alert takes an action: mail, pager,

command

Entire enviroment

● Data replication:
– drbd/rsync/database schema

● Heartbeat:
– Primary does not answer, secondary takes

the ip service and starts the services ->
services available

● Mon:
– Some services are not responding: mail

the admin, stop heartbeat

Load balance

● A controller divides the requests
among a set of machines

● Share the load
● Easily recover if a box failed

Linux Virtual Server

● Load balance
– Priority, last used, least used, round robin,

or combined
● Controller: can respond or not
● Take care of data: services as http

Some simple load
balance
● DNS: same address

www IN A 192.168.0.7

www IN A 192.168.0.8

● Iptables: several or a range –to:

iptables -t nat -A OUTPUT -p tcp -d xxx -j
DNAT --to x1 --to x2

Remember

● What you need to replicate
● How exactly should be it
● How much the load does the box

support
● The network
● If schedule, how repeatedly will those

periods occur

Links and Questions?

● http://www.linux-ha.org/
● http://www.drbd.org/
● http://www.linuxvirtualserver.org/

sulamita@linuxchix.org.br

http://www.linux-ha.org/
http://www.drbd.org/
http://www.linuxvirtualserver.org/

