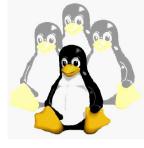

High Availability Clusters in Linux

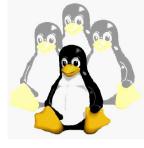
Sulamita Garcia EDS Unix Specialist sulamita@linuxchix.org.br

What are clusters

- A set of computers working as one
- High Performance Computing
 - Super computers
- Load Balance
 - Easy way to improve responsiveness: less delay
- High Availability
 - Always responding


Why High Availability

- We all depend on digital systems
 - From light to banks, any stop is a nightmare
 - Even e-mail communication can cost: clients, time lines, productivity
- It is a plus in services
 - Security also means availability and failure recover


Failures

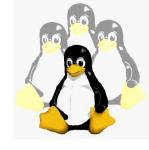
- There is always a possibility of error
- Failure: physical electrical or mechanical
- Error: a failure which affects the data, changing a value
- Fault: a failure causes a crash or freezes the system

High Availability

- Systems always online
- Classified by number of 9s
 - 99,99%
 - 99,999% <- majority
 - 99,9999%...
 - Suppliers always try improve this number
- Availability == 1 is hypothetical there is always a chance of failure

Ways to HA

- Fault tolerance software
 - Avoiding failures to become errors and errors become defects
 - Complex and heavy
- Hardware
 - Can perform many tasks
 - Very expansive



High Availability

- Work with fault possibility
- Redundancy by hardware and control by software
- Usual hardware
- Machines recover themselves automatically

Identifying the environment

- A set of resources to take care of
- Tests to be run frequently
- Actions to run if these tests to fail
- Tools to check and manage the environment

Resources

- A web server
- A link
- Network card state
- A storage unit

Actions or tests

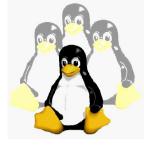
- Reload the service
- Reboot the machine
- fsck the filesystem
- Configuration of alternative routes
- Notification to admin by pager, mail

High Availability -Contingency

- Raid
- Redundant energy font
- Two Internet link
- Two network cards
- Data Replication
- Configuration replicating
- Replication of user information...

Replication data

- Depends on data
- Does it change to much?
- Does it have much access?
- Can you loose some data?
- How much load the machine can have?


DRBD

- Data replication block device
 - Block replication: don't understand data
- Replicates partitions, but not files nor directories
- Mirroring: two nodes at time
- Data immediately replicated: highly reliable

DRBD

- Metadata: 128Mb for mirroring
 - Separate partition: indexing
 - Or shrink your data to grarantee 128Mb to drbd
- Separate link connection
- Any filesystem: ext3, reiserfs, etc
- Load: must be a well designed project
- Great project, few people: if you can contribute

Databases

- Drbd replicates blocks: don't know about registers
- A wrong register can crash entire database
- Most databases already has a way to do it
 - Oracle, LDAP(directory service slurpd)
- Master -> slaves
 - Share the load

Databases

- Mysql:
 - Master: my.cnf

 [mysqld]
 log-bin
 server-id=1
 - Slaves:

```
mysql>CHANGE MASTER TO MASTER_HOST='SERVER',
MASTER_USER='REPLICATION',
MASTER_PASSWORD='MYPASS',
MASTER_LOG_FILE='SERVER-BIN.00001',
MASTER_LOG=211;
mysql> START SLAVE;
```


Another way

- Rsync
 - Replicates files and directories
 - Updates
 - Scheduling
 - Low load
 - Permission: users, machines
 - Can loose some data

Monitoring

- Heartbeat
 - Check other machine's availability
 - Define primary/secondary
 - When a primary does not answer, the secondary takeovers the services and resources
 - Take care of to small times: machines can fight over services, that's not good

Mon

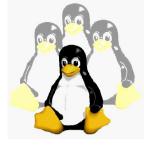
- Small
- Many monitors and alerts
 - Monitor check a service
 - Alert takes an action: mail, pager, command

Entire enviroment

- Data replication:
 - drbd/rsync/database schema
- Heartbeat:
 - Primary does not answer, secondary takes the ip service and starts the services -> services available
- Mon:
 - Some services are not responding: mail the admin, stop heartbeat

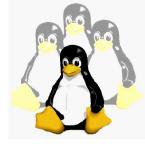
Load balance

- A controller divides the requests among a set of machines
- Share the load
- Easily recover if a box failed



Linux Virtual Server

- Load balance
 - Priority, last used, least used, round robin, or combined
- Controller: can respond or not
- Take care of data: services as http


Some simple load balance

- DNS: same address
 www IN A 192.168.0.7
 www IN A 192.168.0.8
- Iptables: several or a range --to: iptables -t nat -A OUTPUT -p tcp -d xxx -j DNAT --to x1 --to x2

Remember

- What you need to replicate
- How exactly should be it
- How much the load does the box support
- The network
- If schedule, how repeatedly will those periods occur

Links and Questions?

- http://www.linux-ha.org/
- http://www.drbd.org/
- http://www.linuxvirtualserver.org/

sulamita@linuxchix.org.br