
André Pang

Concurrency
and Erlang

1

Threads

2

Concurrency = Threads, for most of you. So, what’s so hard about threads?

mutate_variable();
pthread_mutex_lock(mutex);

pthread_mutex_unlock(mutex);

3

Lock, mutate/access, unlock, on every access to the variable. Looks simple, right?

War Stories

4

Well, let’s hear some war stories from our own community that may indicate that concurrency
isn’t quite so easy… (2 minutes)

“A computer is a
state machine.

Threads are for
people who can’t

program state
machines.”

— Alan Cox

5

6

Andrew Tridgell: Software Engineering Keynote at Linux.conf.au 2005. In the context of
techniques used in Samba 4 to handle multiple concurrent client connections.

“Threads are evil.”

7

“Processes are ugly…”

8

“State machines send you mad.”

9

And this is why Alan Cox’s quip about state machines is, well, slightly incorrect. State
machines really do send you mad once you have to handle a metric boatload of states.

“Samba4: Choose your own
combination of evil, ugly and

mad.”

10

Similar to Apache: offload the choice to the user. Why does a user have to choose between
apache-mpm-event, -itk, -perchild, -threadpool, and -worker threading models? Main
point: Tridge is unhappy with all these models.

“… I recall how I took a lock on a data structure
that when the system scaled up in size lasted 100
milliseconds too long, which caused backups in

queues throughout the system and deadly cascade
of drops and message retries…”

11

“… I can recall how having a common memory
library was an endless source of priority inversion

problems…”

12

“… These same issues came up over and over
again. Deadlock. Corruption. Priority inversion.

Performance problems. Impossibility of new people
to understand how the system worked…”

13

“After a long and careful analysis the results are
clear : 11 out of 10 people can't handle threads.”

— Todd Hoff,
The Solution to C++ Threading is Erlang

14

In light of how hard (shared state) concurrency is to do right, do we need concurrency at all?
(6 minutes)

32 Cores

15

Reason 1: Performance, scalability. Servers already have 32 cores. Much bigger challenge to
write server code that can scale well to this size. (Apache? Samba?)

2 Cores

16

0

8

16

24

32

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

Processor Cores (source: Herb Sutter—”Software and the Concurrency Revolution”)

17

Reason 2: You’ll be required to. Desktops already have 2 cores. Multithreading not
important for a lot of applications, but some apps really benefit from them (Photoshop &
GIMP!)

18

Let’s talk about an industry that has had to face these problems in the past few years: games!

19

In the talk, this is was a trailer for Company of Heroes, a state-of-the-art game in 2006
developed by Relic Entertainment. The video was designed to show the interaction of a lot of
objects and also the fantastic graphical detail that can be achieved today.

20

3 Xenon CPUs: PowerPC, 3.2GHz.

21

Playstation 3: 1 main PowerPC core @ 3GHz, 6 “Synergistic Processing Elements” at 3GHz.

GeForce 8800

22

NVIDIA GeForce 8800GTX: 128 stream processors @ 1.3GHz, ~520GFlops.

GeForce 8800

23

NVIDIA GeForce 8800GTX: 128 stream processors @ 1.3GHz, ~520GFlops.

“If you want to utilize
all of that unused
performance, it’s
going to become

more of a risk to you
and bring pain and

suffering to the
programming side.”

— John Carmack

24

So what do games programmers think about concurrency? Do they find it easy? Apparently
not… (12 minutes).

25

Tim Sweeney: lead programmer & designer, Unreal Tournament (from the original to 2007).
Best game engine architect and designer, bar none. Unreal Engine 3 to be sustainable to
2010 (16 cores). 50+ games using UE series. Used in FPSs, RTSs, MMORPGs…

26

27

Arguably the best games architect and designer in the world is calling shared-state
concurrency intractable. How on Earth are the rest of us puny humans meant to cope?

“Surely the most
powerful stroke

for software
productivity,
reliability, and

simplicity has been
the progressive
use of high-level

languages for
programming.”

— Fred P. Brooks

28

Perhaps a better programming paradigm can help with this?

29

Erlang: a programming language developed at Ericsson for use in their big
telecommunications switches. Named after A. K. Erlang, queue theory mathematician. (16
minutes).

Hello, World

hello() -> io:format("hello, world!~n").

hello(Name) -> io:format("hello, ~s!~n", [Name]).

30

Variable names start with capital letters. Variable names are single-assignment (const).

-module(hello_concurrent).

-export([receiver/0, giver/1, start/0]).

receiver() ->
 receive
 diediedie -> ok;
 { name, Name } -> io:format("hello, ~s~n", [Name]), receiver()
 end.

giver(ReceiverPid) ->
 ReceiverPid ! { name, "Andre" },
 ReceiverPid ! { name, "Linux.conf.au" },
 ReceiverPid ! diediedie.

start() ->
 ReceiverPid = spawn(hello_concurrent, receiver, []),
 spawn(hello_concurrent, giver, [ReceiverPid]),
 start_finished.

Hello, Concurrent
World

31

Tuples, spawn used to start new threads, ! used to send messages, and receive used to
receive messages. No locking, no mutexes, no shared state at all…

K
B

 p
e
r
 S

e
c
o
n
d

Number of Concurrent Connections

Apache (Local) Apache (NFS) YAWS (NFS)

32

And how is Erlang’s performancece? Apache dies at 4,000 connections. YAWS? 80000+…
(and that’s one Erlang process per client connection!)

process
(N threads)

process
(M threads)

kernel space

user space

Erlang
VM

33

Userland (green) threads. Cooperative scheduler — but safe, because Erlang VM is in full
control. Erlang R11B uses multiple kernel threads for I/O and SMP efficiency. No kernel
threads means no context switching means very very fast threading.

War Stories

34

Flip our problem on its head: what can you do if threads are really easy, instead of being
really hard?

Concurrency-
Oriented

Programming

35

Reason 3: Threads can map onto the problem space better. What if every object here was its
own thread; its own actor? Wouldn’t that be a much more elegant solution than a big
gigantic state machine? (25 minutes)

Crashdump Viewer

36

Erlang has good tools required by industry, since it’s used in industry as well as academia.
e.g. An awesome Crashdump Viewer (or as Conrad Parker would say, Crapdump Viewer).

Hot Code Reloading

erl -rsh /usr/bin/ssh -remsh erlang_node@hostname
1> code:purge(module_name).
2> code:load_file(module_name).

37

How to do hot-code-reloading: two lines of Erlang! Existing modules will keep running until
they’re no longer used, all managed by the Erlang VM.

Mnesia

-record(passwd, { username, password }).

mnesia:create_schema([node()]),
mnesia:start(),
mnesia:create_table(passwd, []),
NewUser = #passwd{ username=“andrep”, password=”foobar” },
F = fun() -> mnesia:write(passwd, NewUser) end,
mnesia:transaction(F).

38

Mnesia is Erlang’s insanely great distributed database. Incredibly simple to use! No data
impedence mismatch. Store tuples, lists, any Erlang object: none of this SQL row/column
nonsense. Query language is just list comprehensions. Transactions are functions!

Mnesia

39

Mnesia is replicating. Add new node clusters on-the-fly. Nodes can go down and come back
up, and Mnesia will resync the database information to them automatically. With
programmer help, it can even recover from network partitioning.

Self-Healing
Architecture

40

Erlang gives you a complete framework for writing massive, robust, scalable applications.
Callback functions. OO analogy. OTP drives the application: you supply the “business logic”
as callbacks. This means that Erlang is a self-healing, self-sustaining system, and is the main
reason why Erlang applications are so robust. (30 minutes)

41

AXD301 telephone switch. One to two million lines of Erlang code. Downtime of maybe a
few minutes per year, continuous operation over years. On-the-fly upgrades. Mnesia used
for _soft-real-time_ network routing lookup. Mnesia is just 30,000 lines of code. Impressed
yet?

42

5,000-10,000 clients + >800 other Jabber servers all connected to one single machine. Load
average is rather low. Also doesn’t crash, unlike jabberd2!

mutate_variable();
pthread_mutex_lock(mutex);

pthread_mutex_unlock(mutex);Just
 Say N

o

43

Shared state concurrency just doesn’t scale well, is hard to get right (especially if
performance is needed: what granularity of locks do you use?). Race conditions, deadlocks,
livelocks, no compiler help. Just say no!

44

Prefer the messaging (actor) model: use it in your own language! You can do it in C, C++,
Python, Java, or whatever your other language is. You may have to write some infrastructure
code, but by God it’ll be easier in the end!

Questions?

andre.pang@risingsunresearch.com

45

http://www.risingsunresearch.com
http://www.risingsunresearch.com

Thank You!

andre.pang@risingsunresearch.com

46

http://www.risingsunresearch.com
http://www.risingsunresearch.com

