ANDRE PANG

THREADS

Concurrency = Threads, for most of you. So, what’s so hard about threads?

pthread_mutex_lock(mutex);

mutate_variable();
pthread_mutex_unlock(mutex);

Lock, mutate/access, unlock, on every access to the variable. Looks simple, right?

I

.
r

” o - -
—_ 1 'I' N

-

L T .

LR
— -

WAR =

&'}
oy
_

T

Well, let’s hear some war stories from our own community that may indicate that concurrency

(2 minutes)

>
v
S
@
o
wn
w
=
S
o
>
c
2

“A computer s a
state machine.

Threads are for
people who can't
program state
machines.”

— Alan Cox

Andrew Tridgell: Software Engineering Keynote at Linux.conf.au 2005. In the context of
techniques used in Samba 4 to handle multiple concurrent client connections.

“Threads are evil.”’

“Processes are ugly. . ."

]
K

X

[

¥

jl

[
5 |
) |
) |
gl

“State machines send -you mad”

And this is why Alan Cox’s quip about state machines is, well, slightly incorrect. State
machines really do send you mad once you have to handle a metric boatload of states.

4: Choose your own
comblnatlcn of evilyUsly and
mad.’

10

Similar to Apache: offload the choice to the user. Why does a user have to choose between
apache-mpm-event, -itk, -perchild, -threadpool, and -worker threading models? Main
point: Tridge is unhappy with all these models.

... | recall how | took a lock on a data structure
that when the system scaled up in size lasted |00
milliseconds too long, which caused backups In

queues throughout the system and deadly cascade
of drops and message retries...”

... I can recall how having a common memory
ibrary was an endless source of priority inversion

broblems...”

" .. These same Issues came up over and over
again. Deadlock. Corruption. Priority inversion.

Performance problems. Impossibility of new people
to understand how the system worked..."

“After a long and careful analysis the results are
clear: | | out of |0 people can't handle threads.”

— lodd Hoff,
The Solution to C++ Threading is Erlang

14

In light of how hard (shared state) concurrency is to do right, do we need concurrency at all?
(6 minutes)

____ SunFire T2000]

@A @F O e et e

(oM)

32 CORES

Reason 1: Performance, scalability. Servers already have 32 cores. Much bigger challenge to

write server code that can scale well to this size. (Apache? Samba?)

2 CORES

16

— PROCESSOR CORES (SOURCE: HERB SUTTER—”SOFTWARE AND THE CONCURRENCY REVOLUTION")

Reason 2: You'll be required to. Desktops already have 2 cores. Multithreading not
important for a lot of applications, but some apps really benefit from them (Photoshop &
GIMPY)

18
Let’s talk about an industry that has had to face these problems in the past few years: games!

19

In the talk, this is was a trailer for Company of Heroes, a state-of-the-art game in 2006
developed by Relic Entertainment. The video was designed to show the interaction of a lot of

objects and also the fantastic graphical detail that can be achieved today.

3 Xenon CPUs: PowerPC, 3.2GHz.

©2006 Sony Computer Entertainment Inc. All rights reserved.
Design and specifications are subject to change without notice.

Playstation 3: 1 main PowerPC core @ 3GHz, 6 “Synergistic Processing Elements” at 3GHz.

GEFORCE 8800

NVIDIA GeForce 8800GTX: 128 stream processors @ 1.3GHz, ~520GFlops.

| 60Q42T5 NE3IBAZ
o TAIWAN
T p16414 NXA

GEFORCE 8800

NVIDIA GeForce 8800GTX: 128 stream processors @ 1.3GHz, ~520GFlops.

"It you want to utilize
all of that unused
performance, It's
ooing to become

more of a risk to you

and bring pain and
suffering to the
programming side.”

— John Carmack

24

So what do games programmers think about concurrency? Do they find it easy? Apparently
nhot... (12 minutes).

25

Tim Sweeney: lead programmer & designer, Unreal Tournament (from the original to 2007).
Best game engine architect and designer, bar none. Unreal Engine 3 to be sustainable to
2010 (16 cores). 50+ games using UE series. Used in FPSs, RTSs, MMORPGs...

The C++/Java/C# Model:
"Shared State Concurrency”

* This is hard!

* How we cope in Unreal Engine 3:

- 1 main thread responsible for doing all work we
can't hope to safely multithread

- 1 heavyweight rendering thread

- A pool of 4-6 helper threads
* Dynamically allocate them to simple tasks.

- "Program Very Carefully!”
" Huge productivity burden

%cales poorly to thread counts

Concurrency in Gameplay Simulation

This is the hardest problem..

= 10,00's of objects

= Each one contains mutable state

* Each one updated 30 times per second

= Each update touches 5-10 other objects

Manual synchronization (shared state concurrency)
S
hopelessly intractible here.
Solutions?

Q&T - Rewrite as referentially-transparent functions?

- Message-passing concurrency?

pe

Arguably the best games architect and designer in the world is calling shared-state
concurrency intractable. How on Earth are the rest of us puny humans meant to cope?

27

“Surely the most
powerful stroke
for software
productivity,
reliability, and
simplicity has been
the progressive
use of high-level
languages for
programming.”

SNIdIINIONG JHVYMLIOS NO SAYSES3

MY THICA L
MAN-MONTI

FREDERICK P. BROOKS, JR.

— Fred P Brooks

Perhaps a better programming paradigm can help with this?

Erlang: a programming language developed at Ericsson for use in their big
telecommunications switches. Named after A. K. Erlang, queue theory mathematician. (16
minutes).

HELLO, WORLD

hello() -> 10:format("hello, world!~n").

hello(Name) -> 1o:format("hello, ~s!~n", [Name]).

Variable names start with capital letters. Variable names are single-assignment (const).

HELLO, CONCURRENT
WORLD

-module(hello_concurrent).
-export([receiver/0, giver/l, start/0]).

receiver() ->
receive
diediedie -> ok;
{ name, Name } -> 1io:format("hello, ~s~n", [Name]), receiver()
end.

giver(ReceiverPid) ->
ReceiverPid ! { name, "Andre" },
ReceiverPid ! { name, "Linux.conf.au" },
ReceiverPid ! diediedie.

start() ->
ReceiverPid = spawn(hello_concurrent, receiver, []),
spawn(hello_concurrent, giver, [ReceiverPid]),
start_finished.

Tuples, spawn used to start new threads, ! used to send messages, and receive used to
receive messages. No locking, no mutexes, no shared state at all...

- APACHE (LOocAlL) - APACHE (NFS) - YAWS (NFS)

00 T T T
‘plot—yaws-dizk-long?' —e—

'plot-apache-250thr-disk' ——
SO0 7 S

700 fi

R0

G0

4010

A00)

200)

a
Z
O
0
Lu
]
14
Lu
il
m
Y

10000 20000 2000 40000 OO0 BOOGG FO000 SO0 0000

NUMBER OF CONCURRENT CONNECTIONS

And how is Erlang’s performancece? Apache dies at 4,000 connections. YAWS? 80000+...
(and that’s one Erlang process per client connection!)

USER SPACE

KERNEL SPACGCE

Userland (green) threads. Cooperative scheduler — but safe, because Erlang VM is in full
control. Erlang R11B uses multiple kernel threads for I/O and SMP efficiency. No kernel
threads means no context switching means very very fast threading.

(@)
=
(D)
O
(-
o
L)
(qo]
Q
=
n
=
>
(Vs
©
v
=
I
)
| -
(D)
| -
(gv]
(Vs
O
(qv)
(D)
| -
-
Fi)
=
O
O
>
O
>
-
(gv]
o
)
(gv]
-
=
Im
(qv)
v
-
n
et
-
@
&
@
O
O
| -
o
| -
)
@
o
e

..
5
—
go]
-
=
K
Q
-

P o -ﬁ =
< -
- L]
- - ol & -I
- o s -
& -
- - 3
= -
-
L2 =
l..-_-_ "‘I- ._*--:-
el —-L

.

2 1-__'_- e .--'-
B | .' ,g‘\,. =
. a-‘a. i :
1 11" .'h." ';‘- t " l_ e ..— --I-‘.‘.‘-u-.t F - ; ...-:l: :1 ¢ s -
E L T e, W £, 7

ERDGR |

...iqu . _1

Reason 3: Threads can map onto the problem space better. What if every object here was its
own thread; its own actor? Wouldn’t that be a much more elegant solution than a big
gigantic state machine? (25 minutes)

|

Erlang WebTool —

WebTool |CrashDumpViewer | | |
Crashdump currently viewed:
/Users/andrep/Crashes/er]_crash-18831.dump
General information ‘ Inf : 0T
-~ Process Information Hep
Ports
ETS tables MsgQ
Timers Pid Name/Spawned as State || Reductions || Stack+heap Lengtl
Fun table
Atoms Garbing
Distribution information <0.24235.170> || 'ejabberd_mod_logxml_cinesync.com' || (limited 2412669566 145962050 127
Loaded modules info)
[Internal Tables . .
CIM inf tion <0.23949.170= || erlang:apply/2 Waiting 1138895 2103540 0
UIDocumentation <0.24095.243> || proc_lib:init_p/5 Waiting 3923404 832040 0
& <0.24983.270> || proc_lib:init_p/5 Scheduled 626994 514229 131
(Load New Crashdump) <0.23968.170> || mnesia_tm Waiting 565816 514229 0
<0.22955.270> || proc_lib:init_p/5 Scheduled 9204702 317811 7
<0.24223.170> || 'ejabberd_mod_pubsub_cinesync.com' || Waiting 849347 121393 0
<0.23943.170> || application_master:start_it'4 Waiting 490069 75025 0
<0.23284.243> || proc_lib:init_p/5 Waiting 239456 46368 0
<0.21558.243> || proc_lib:init_p/5 Waiting 252922 46368 0
e
<0.1590.216> || proc_lib:init_p/5 Waiting 6138384 46368 ol *
-

CRASHDUMP VIEWER

Erlang has good tools required by industry, since it’s used in industry as well as academia.
e.g. An awesome Crashdump Viewer (or as Conrad Parker would say, Crapdump Viewer).

HOT CODE RELOADING

erl -rsh /usr/bin/ssh -remsh erlang_node@hostname

1> code:purge(module_name).
2> code:load_file(module_name).

37

How to do hot-code-reloading: two lines of Erlang! Existing modules will keep running until
they’re no longer used, all managed by the Erlang VM.

MNESIA

-record(passwd, { username, password }).

mnesia:create_schema([node()]),

mnesia:start(),

mnesia:create_table(passwd, []),

NewUser = #passwd{ username=“andrep”, password="foobar” },

F = fun() -> mnesia:write(passwd, NewUser) end,
mnesia:transaction(F).

Mnesia is Erlang’s insanely great distributed database. Incredibly simple to use! No data
impedence mismatch. Store tuples, lists, any Erlang object: none of this SQL row/column
nonsense. Query language is just list comprehensions. Transactions are functions!

MNESIA

\\\\\\\\\\\ } s\:\\\\\\

N\
A

39
Mnesia is replicating. Add new node clusters on-the-fly. Nodes can go down and come back
up, and Mnesia will resync the database information to them automatically. With

programmer help, it can even recover from network partitioning.

"J 806 OTP Design Principles ,J

OTP Design Principles m g]l:gcgll;gsDemgn Principles is a set of principles for how to structure Erlang code in terms of processes, modules and

Version 552
1.1 Supervision Trees
Bibliography | Glossary |

— e A basic concept in Erlang/OTP is the supervision tree. This is a process structuring model based on the idea of
Table of Contents workers and supervisors.
1 Overview » Workers are processes which perform computations, that is, they do the actual work.
1.1 Supervision Trees * Supervisors are processes which monitor the behaviour of workers. A supervisor can restart a worker if
1.2 Behaviours Scmcmmg £0es Wrong.

1.3 Applications
1.4 Releases

1.5 Release Handling

" » The supervision tree is a hierarchical arrangement of code into supervisors and workers, making it possible to
design and program fault-tolerant software.

2 Gen Server Behaviour
2.1 Client-Server Principles 1
2.2 Example

2.3 Starting a Gen Server

2.4 Synchronous Reguests
Call 1 a

2.5 Asynchronous Reguests
Cast

2.6 Stopping

2.7 Handling Other Messages Q

a 1

3 Gen Fsm Behaviour

3.1 Finite State Machines /

3.2 Example

3.3 Starting a Gen Fsm

3 4 Notifying About Events O O
3.5 Timeouts

3.6 All State Events

3.7 Stopping
3.8 Handling Other Messages

Supervision Tree

In the figure above, square boxes represents supervisors and circles represent workers.
4 Gen Event Behaviour

4.1 Event Handling Principles 1.2 Behaviours

4.2 Example

4.3 Starting an Event Manager . L L.

4.4 Adding an Event Handler In a supervision tree, many of the processes have similar structures, they follow similar patterns. For example, the

4.5 Notifying About Events supervisors are very similar in structure. The only difference between them is which child processes they supervise.

4.6 Deleting an Event Handler || Also, many of the workers are servers in a server-client relation, finite state machines, or event handlers such as error L
4.7 Stopping 4| loggers. A

SELF-HEALING
ARCHITECTURE

Erlang gives you a complete framework for writing massive, robust, scalable applications.
Callback functions. OO analogy. OTP drives the application: you supply the “business logic”
as callbacks. This means that Erlang is a self-healing, self-sustaining system, and is the main
reason why Erlang applications are so robust. (30 minutes)

41
AXD301 telephone switch. One to two million lines of Erlang code. Downtime of maybe a

few minutes per year, continuous operation over years. On-the-fly upgrades. Mnesia used

for _soft-real-time_ network routing lookup. Mnesia is just 30,000 lines of code. Impressed
yet?

Client Conns

g2 20 18 16 14 12 10 & 6

SeErvers

22 20 18 16 14 12 1o 3

Bt
2
o
il
Ll
LM
i
w
=
I
=
LM
)
-l

22 20 185 16 14 12 10

42

5,000-10,000 clients + >800 other Jabber servers all connected to one single machine. Load
average is rather low. Also doesn’t crash, unlike jabberd?2!

pthread_mutex_lo

ock(mutex);

Shared state concurrency just doesn’t scale well, is hard to get right (especially if
performance is needed: what granularity of locks do you use?). Race conditions, deadlocks,
livelocks, no compiler help. Just say no!

SECOND EDITION

THE

T3

L=

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

STROUSTRUP

c The Creator of C++

1 < EC; ++31
forii = 0; i1 < 4; ++1i)
tE[i1[3]1 *= tk[i]1[] -

forij = 1; 3 =< EC J Z; ++731
for{i = 0; i = 4; ++1i1
tk[i][3] == tk[i]l[37 - 11]:

‘or(io o= 0; i <= 4; ++41i)
tE[i] [EC f £] *= boxes.getElemg

e S 2+ 1; 3 = EC; ++32

Prefer the messaging (actor) model: use it in your own language! You can do it in C, C++,
Python, Java, or whatever your other language is. You may have to write some infrastructure
code, but by God it’ll be easier in the end!

LUESTIONS?

ANDRE.PANE@RISINGSUNRESEARBH.EDM

http://www.risingsunresearch.com
http://www.risingsunresearch.com

THANK YOU!

ANDRE.F‘ANE@RISINGSUNRESEARBH.EDM

http://www.risingsunresearch.com
http://www.risingsunresearch.com

