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Who Are We?

Andrew Cowie
spends an awful lot of 
time programming 
for someone who is 
actually a suit. He 
started with C in the 
early 80s, picked up 
Java in 1997, and 
now, 10 years later, 
is the maintainer of 
the java­gnome 
project. 

Davyd Madeley
is a professional 
software engineer 
and electronic 
engineering student. 
By night he is the 
gnome­applets 
maintainer and a 
contributor to 
GNOME. He plays the 
tenor saxophone.



An Overview

● Why choose GTK+ for your application?
● GTK+ Fundamentals

– Building a UI
– Box packing
– The main loop & signals

● Getting started (in C)
● Window tricks (in Java)
● Complex data models (in Python)



Why Would You Choose GTK+?

● Fast, flexible, ubiquitous
● Multi-platform

– Linux, Unix, Mac OS, Win32, and more
● Many languages

– C, Python and Java
– Perl, C++, Ruby, Haskell, C#, PHP, OCml, Eiffel, 

Erlang, Guile/Scheme/Lisp, Lua, Octave, D, TCL, 
Smalltalk, and more!

● LGPL



A Word on Versions

● Today we're using the following:
– gcc 4.1.x
– GTK+ 2.10.x
– Python 2.4
– pyGTK 2.10
– Sun Java 1.5 (& Free Java too!)
– Eclipse 3.2.x
– java-gnome 4.0
– Glade 3.1.x



Widgets 'n stuff

● all displayed items are a GtkWidget; all 
interfaces are built down from a “top level”, 
inevitably  GtkWindow



Building a UI

● You can write code ...
– Programmatically create elaborate custom content, 

dynamic layouts, and smaller Widgets



C Demo!

A
 GtkWindow

with a
GtkButton

in it!



Compiling

gcc ­o demo \
`pkg­config ­­cflags ­­libs \
 gtk+­2.0` demo.c



Building a UI

● You can write code ...
– Programmatically create elaborate custom content, 

dynamic layouts, and smaller Widgets
● or use Glade ...

– Great for big, complex windows with lots of Layout



C Demo!

A
 GtkWindow

with a
GtkButton
with Glade!



Building a UI

● You can write code ...
– Programmatically create elaborate custom content, 

dynamic layouts, and smaller Widgets
● or use Glade ...

– Great for big, complex windows with lots of Layout
● or do both simultaneously!

– no point using Glade if coding it directly is less 
lines of code

– Use Glade for most of Window (ie, Labels) and 
code for the dynamically generated bits



Box Packing

GTK+ uses a
“box packing” 

model.



Box Packing

● Start a GtkWindow
● Pack a GtkVBox into the Window
● Pack a GtkLabel into the VBox
● Pack a GtkScrolledWindow into the VBox
● Pack a GtkTreeView into the ScrolledWindow



Glade Demo!

Using
Glade

to do complex
Box packing

layouts



The Main Loop

● GUI programming is event driven programming

● The main loop polls sources for events
● events include user activity (keyboard or 

mouse), I/O, or a timeout
● events issued as named signals; register 

callbacks for signals you want to react to



The Main Loop

Callbacks for events are 
issued from the main loop...

... one at a time

... and it's single threaded!

DON'T BLOCK 
THE MAIN LOOP!



Signals

● Signals are connected to GObjects
● Often you pass 4 things:

– object
– signal name
– callback function
– optional free-form “user data”

● Prototype for each callback in API docs
● Some callbacks return information to GTK+ 

(eg a gboolean)



Signals – C

g_signal_connect(my_gobject,
                 “notify::parent”,
                 G_CALLBACK(notify_parent_cb),
                 NULL);

void notify_parent_cb(GObject *my_gobject,
                      GParamSpec arg1,
                      gpointer user_data)
{

   ...  

}



C Demo!

Hooking up a
signal



Signals

● Some signals already have handlers registered
– eg. expose-event

● Some signals are passed up the widget tree 
from your widget all the way to the toplevel
– eg. expose-event, enter-notify-event
– You can choose whether or not to stop these in 

your signal handler by returning True or False



Java Demo!

Same code, 
different language:

Java



delete-event

Closing a Window
!=

Terminating 
application

Beware the main loop!



GtkFileChooser

Choose a file,
any file



Python Demo!

Same code, 
different language:

Python



GtkTreeView

● Can display trees or lists of data
● Uses an model, view, control (MVC) paradigm
● You need three things:

– a GtkTreeView
– a GtkTreeModel 

(GtkTreeStore, GtkListStore or write your own)
– GtkCellRenderers

● You can store more data in a row than you 
display (handy!)



Python Demo!

See the 
gtk.TreeView for 

the Forrest



Getting More Out of GTK+/GNOME

● GConf – store configuration data
● GNOME-VFS – access data over networks
● Cairo – antialiased vector graphics
● GooCanvas – Cairo based canvas widget
● D-BUS – cross-desktop IPC with GLib tie-in
● Soup – HTTP, XML-RPC and SOAP libraries
● libwnck – Access window information
● libnotify – Popup balloons



Would Ye Like To Know More?

● In C:
– http://www.gtk.org/tutorial/
– Matthias Warkus, The Official 

GNOME 2 Developer's Guide (No 
Starch Press, 2004)

– Devhelp

● In Java:
– http://java-gnome.sourceforge.net/4.0/doc/

● In Python:
– http://www.pygtk.org/pygtk2tutorial/index.html

http://www.gtk.org/tutorial/
http://java-gnome.sourceforge.net/4.0/doc/
http://www.pygtk.org/pygtk2tutorial/index.html


Fin ;)
Questions?

www.davyd.id.au/articles.shtml

operationaldynamics.com/talks

http://www.davyd.id.au/articles.shtml
http://www.operationaldynamics.com/talks/

