
Writing Really Rad
GTK+ & GNOME

Applications
in C, Python or Java

Andrew Cowie
Operational Dynamics

Davyd Madeley
Fugro Seismic Imaging

Who Are We?

Andrew Cowie
spends an awful lot of
time programming
for someone who is
actually a suit. He
started with C in the
early 80s, picked up
Java in 1997, and
now, 10 years later,
is the maintainer of
the java­gnome
project.

Davyd Madeley
is a professional
software engineer
and electronic
engineering student.
By night he is the
gnome­applets
maintainer and a
contributor to
GNOME. He plays the
tenor saxophone.

An Overview

● Why choose GTK+ for your application?
● GTK+ Fundamentals

– Building a UI
– Box packing
– The main loop & signals

● Getting started (in C)
● Window tricks (in Java)
● Complex data models (in Python)

Why Would You Choose GTK+?

● Fast, flexible, ubiquitous
● Multi-platform

– Linux, Unix, Mac OS, Win32, and more
● Many languages

– C, Python and Java
– Perl, C++, Ruby, Haskell, C#, PHP, OCml, Eiffel,

Erlang, Guile/Scheme/Lisp, Lua, Octave, D, TCL,
Smalltalk, and more!

● LGPL

A Word on Versions

● Today we're using the following:
– gcc 4.1.x
– GTK+ 2.10.x
– Python 2.4
– pyGTK 2.10
– Sun Java 1.5 (& Free Java too!)
– Eclipse 3.2.x
– java-gnome 4.0
– Glade 3.1.x

Widgets 'n stuff

● all displayed items are a GtkWidget; all
interfaces are built down from a “top level”,
inevitably GtkWindow

Building a UI

● You can write code ...
– Programmatically create elaborate custom content,

dynamic layouts, and smaller Widgets

C Demo!

A
 GtkWindow

with a
GtkButton

in it!

Compiling

gcc ­o demo \
`pkg­config ­­cflags ­­libs \
 gtk+­2.0` demo.c

Building a UI

● You can write code ...
– Programmatically create elaborate custom content,

dynamic layouts, and smaller Widgets
● or use Glade ...

– Great for big, complex windows with lots of Layout

C Demo!

A
 GtkWindow

with a
GtkButton
with Glade!

Building a UI

● You can write code ...
– Programmatically create elaborate custom content,

dynamic layouts, and smaller Widgets
● or use Glade ...

– Great for big, complex windows with lots of Layout
● or do both simultaneously!

– no point using Glade if coding it directly is less
lines of code

– Use Glade for most of Window (ie, Labels) and
code for the dynamically generated bits

Box Packing

GTK+ uses a
“box packing”

model.

Box Packing

● Start a GtkWindow
● Pack a GtkVBox into the Window
● Pack a GtkLabel into the VBox
● Pack a GtkScrolledWindow into the VBox
● Pack a GtkTreeView into the ScrolledWindow

Glade Demo!

Using
Glade

to do complex
Box packing

layouts

The Main Loop

● GUI programming is event driven programming

● The main loop polls sources for events
● events include user activity (keyboard or

mouse), I/O, or a timeout
● events issued as named signals; register

callbacks for signals you want to react to

The Main Loop

Callbacks for events are
issued from the main loop...

... one at a time

... and it's single threaded!

DON'T BLOCK
THE MAIN LOOP!

Signals

● Signals are connected to GObjects
● Often you pass 4 things:

– object
– signal name
– callback function
– optional free-form “user data”

● Prototype for each callback in API docs
● Some callbacks return information to GTK+

(eg a gboolean)

Signals – C

g_signal_connect(my_gobject,
 “notify::parent”,
 G_CALLBACK(notify_parent_cb),
 NULL);

void notify_parent_cb(GObject *my_gobject,
 GParamSpec arg1,
 gpointer user_data)
{

 ...

}

C Demo!

Hooking up a
signal

Signals

● Some signals already have handlers registered
– eg. expose-event

● Some signals are passed up the widget tree
from your widget all the way to the toplevel
– eg. expose-event, enter-notify-event
– You can choose whether or not to stop these in

your signal handler by returning True or False

Java Demo!

Same code,
different language:

Java

delete-event

Closing a Window
!=

Terminating
application

Beware the main loop!

GtkFileChooser

Choose a file,
any file

Python Demo!

Same code,
different language:

Python

GtkTreeView

● Can display trees or lists of data
● Uses an model, view, control (MVC) paradigm
● You need three things:

– a GtkTreeView
– a GtkTreeModel

(GtkTreeStore, GtkListStore or write your own)
– GtkCellRenderers

● You can store more data in a row than you
display (handy!)

Python Demo!

See the
gtk.TreeView for

the Forrest

Getting More Out of GTK+/GNOME

● GConf – store configuration data
● GNOME-VFS – access data over networks
● Cairo – antialiased vector graphics
● GooCanvas – Cairo based canvas widget
● D-BUS – cross-desktop IPC with GLib tie-in
● Soup – HTTP, XML-RPC and SOAP libraries
● libwnck – Access window information
● libnotify – Popup balloons

Would Ye Like To Know More?

● In C:
– http://www.gtk.org/tutorial/
– Matthias Warkus, The Official

GNOME 2 Developer's Guide (No
Starch Press, 2004)

– Devhelp

● In Java:
– http://java-gnome.sourceforge.net/4.0/doc/

● In Python:
– http://www.pygtk.org/pygtk2tutorial/index.html

http://www.gtk.org/tutorial/
http://java-gnome.sourceforge.net/4.0/doc/
http://www.pygtk.org/pygtk2tutorial/index.html

Fin ;)
Questions?

www.davyd.id.au/articles.shtml

operationaldynamics.com/talks

http://www.davyd.id.au/articles.shtml
http://www.operationaldynamics.com/talks/

