The Kernel hacker generations

Jan 2007/

Andi Kleen, SUSE Labs, Novell
ak@suse.de




Linux kernel as a long term project

ODeveloped by many people over time
Owith various interests and motivations

UTrends not people

ONo temporal ordering
OQverlap

OBias to newer developments




The janitor generation

OlLarge codebase needs maintenance

Ukernelnewbies / kernel-janitors
HClean up code base in simple ways
DOGenerate many changes

OPatch infrastructure handles it now
OoDidn’t use to.

HGraduation to more difficult projects?




‘The loginname-tree generation

O Starting with famous -aa and -ac trees
Othen became a trend

URelieved a lot of pressure during the "merging crisis"

HTests patches not yet in mainline
OBut can so many trees find enough audience?

OCollection of different "branches"

LMostly replaced by one big tree (-mm)

Ocollection of more topical trees
Oand distribution trees of course




'Corporate generation

OWhen Linux became big business ...

ODrivers

OHooks, hooks, hooks
O Often steered to better solutions

OGreat projects

OBut not always outside the company
OMissed much useful from the early submissions




Corporate generation |

HOChanges usually developed in a closed way
Oand deliver a finished / QAed patch.

["patch publishing” model quite different

HSubmission originally very lossy
OLost some useful things early

OWorks well now in many cases

O|ntroduction of new contributors still needed
OReview still a problem




[The Russian mathematicians

CONot all Russians or even mathematicians

0"... room full of hackers operating under a single name"

OVery bright people

O Solve tricky problems

OThankfully we got them as the kernel got harder
OEspecially MP scaling

OBut in the end | hope we don’t need them anymore




Flame generation

OFlames always existed

LBut tone seems to get nastier
OEspecially during review

UDanger of scaring valuable new people away




Deadline generation

OLinux kernel development used to be relaxed ...

02 week merge windows
OANd it’s unpredictable when the window opens

OCreates a lot of time pressure for hackers to get changes in

HCode with (soft) deadlines now




(Developing) tester generation

OTraditionally Linux relies on users as testers
ONo formal QA in kernel.org

ULarger user base doesn’t use bleeding edge kernels anymore
O Still got good hardware coverage

LMore and more complexity that is hard to test casually

L Systematic regression testing
Olnternal test code
OTest code that is not often tested




(Slowly developing) bugmaster generation

OWhen to do a release?
UDepends on the bugs

HOGrowing bug numbers are (probably) a big problem
OBut we actually don’t know for sure
OTheory:
OFact: Source is growing
OEven if bug rate / source line is constant this means ...
OKeeping track of bugs

OWidely scattered
ODistributions versus kernel.org




‘What does a bugmaster do?

OWork with bug reporters to get basic information
UPrune duplicates

UWeed out dead bugs

LSet proper priorities

ONag maintainers to fix the bugs

UKeeping track of regressions

UDon’t need to be experts on any kernel areas
UDon’t need to fix the bugs!

OKnow what state a release is Iin
Oand how Linux iIs doing on the bugginess scale




(Slowly Developing) Technical writer generation

HComplex systems need documentation

Olnternal documentation
ONeeds maintenance

LMaintain man pages

OFuture: Work on "great unified Linux documentation tree"?




Developing: Destructive generation

OStress kernels to find bugs that normal testers don’t hit
Ofsx
Ofsfuzzer

UDistributions have some people
Obut they don’t work on mainline

Hand some gotten from other OS




| More destruction

ODestroy a kernel ...

U... and then write good a good bug report about it!

Olnternal white box testing
Olnject errors

Olnject errors

Olockdep
Omalloc failure tester

LUMore destroyers needed




Future: The reviewer generation

OA Generation | would like to see

LSource code growing quickly

OLots of new programms
O... and Linux relies on code review to keep code quality high

Reviewing bootle neck
O... especially for "unsexy" code




Reviewer generation |l

OMaintainers do a lot of reviewing
Obut they can’'t do it all
Oand there is often no clear maintainer

Ulnterest depends a lot on current hype level
Oand the name of the submitter

UBut for others it is hard to get review




Good review

HCoding style is not all




Really good review

OProper review is a lot of work
OMaintainers can’'t do all the low level review
O Often there is no clear maintainer

UPeople who read code well

Hand are open minded

Hand ask a lot of "stupid" questions
Ulook for simple logic errors
Urecognize bad idioms

Ulike reading code













Often state of the art in kernel debugging ...

Boot ing command—1ist
Linus version 2.6.12-rcS5-default (trenndsmetanal (gee version 3.3.5
erolease) (SUSE Linux)) #2 Thu Jun 2 198:089:57 HDT 2885ev/hdad selin

BI0S-provided physical RAM map:s3 bios,s3_mode earlyprintk=vga 3

B10S-e828

B10S-e828
_BI0S-e820
BI0S-e820

: BHHARBEBRABBBAAAHY

: @AapBeEB1d {48688
: B@BeBBEB1dfdedas
: BBgavBesf fbsanAa

- HBBBHHBHBEBBYcBd (usable)

RINS-eH2B: HAAAAABBABASfcHY - HHBBHBBBBBBaBABB (reserved)
RI0S-eB82A: AAAAAGBRBAEeHBUA - BBHBBBBBBB1BBBBY (reserved)
RIDS-e820: ANANAABRRA1688808 - ARAAAABA1dfdBBBA (usable)

aa0a0a001dfdeBBB (ACPI data)
aaaaaaa01e0800880 (ACPI NUS)
6808800188688B868 (reserved)

BMB HIGHMEM available.

479MB LOMMEM available. -

found SMP MP-table at 88Bff780

early console enabled

DMl 2.3 present.

ACP1: PH-Timer 10 Port: 6x888

ACPI: LAPIC (acpi_id[@x@1] lapic_id[Bx88]1 enabled)

Processor #8 6:13 APIC version 206

ACPI: I0APIC (id[BxB1] address(BxfecBB@dd] gsi_baselB])
IDAPICIB]: apic_id 1, version 32, address @xfecBf@@gd, GSI B8-23

ACP1: IDAPIC (id[@xB2] address[BxfecBBABd] gsi_baselZ4])
Eernal nantiec - nnt cametinag* IMADICI41* Ilnahlae chanoe ﬂ.“ic_ld!



Debugging generation

OFrom "real men don’t need kernel debuggers" to ..

U... tens of debugging options
OThe tale of the standard debugger

HCrash dumps




Maintainer generation

OKernel got a "middle management”
OOr even multiple levels

U (tongue-in-cheek) ... when one looks more at diffstat than
patches"

LOSpend more time on reviewing / merging / bug triaging etc. than
hacking

OBetter investment of time than directly hacking?

LocalWords: dups mvc jpg




