
The Kernel hacker generations

Jan 2007

Andi Kleen, SUSE Labs, Novell
ak@suse.de

 Linux kernel as a long term project

 Developed by many people over time
 with various interests and motivations	

 Trends not people

 No temporal ordering
 Overlap

 Bias to newer developments

 The janitor generation

 Large codebase needs maintenance

 kernelnewbies / kernel-janitors

 Clean up code base in simple ways

 Generate many changes

 Patch infrastructure handles it now
 Didn’t use to.

 Graduation to more difficult projects?

 The loginname-tree generation

 Starting with famous -aa and -ac trees
 then became a trend

 Relieved a lot of pressure during the "merging crisis"

 Tests patches not yet in mainline
 But can so many trees find enough audience?	

 Collection of different "branches"

 Mostly replaced by one big tree (-mm)
 collection of more topical trees
 and distribution trees of course	

 Corporate generation

 When Linux became big business ...

 Drivers

 Hooks, hooks, hooks
 Often steered to better solutions

 Great projects
 But not always outside the company
 Missed much useful from the early submissions

 Corporate generation II

 Changes usually developed in a closed way
 and deliver a finished / QAed patch.

 "patch publishing" model quite different

 Submission originally very lossy
 Lost some useful things early

 Works well now in many cases
 Introduction of new contributors still needed
 Review still a problem

 The Russian mathematicians

 Not all Russians or even mathematicians

 "... room full of hackers operating under a single name"

 Very bright people
 Solve tricky problems

 Thankfully we got them as the kernel got harder
 Especially MP scaling

 But in the end I hope we don’t need them anymore

 Flame generation

 Flames always existed

 But tone seems to get nastier
 Especially during review

 Danger of scaring valuable new people away

 Deadline generation

 Linux kernel development used to be relaxed ...

 2 week merge windows
 And it’s unpredictable when the window opens

 Creates a lot of time pressure for hackers to get changes in

 Code with (soft) deadlines now

 (Developing) tester generation

 Traditionally Linux relies on users as testers
 No formal QA in kernel.org

 Larger user base doesn’t use bleeding edge kernels anymore
 Still got good hardware coverage

 More and more complexity that is hard to test casually

 Systematic regression testing
 Internal test code
 Test code that is not often tested

 (Slowly developing) bugmaster generation

 When to do a release?
 Depends on the bugs

 Growing bug numbers are (probably) a big problem
 But we actually don’t know for sure
 Theory:
 Fact: Source is growing
 Even if bug rate / source line is constant this means ...
 Keeping track of bugs
 Widely scattered
 Distributions versus kernel.org

 What does a bugmaster do?

 Work with bug reporters to get basic information
 Prune duplicates
 Weed out dead bugs
 Set proper priorities
 Nag maintainers to fix the bugs
 Keeping track of regressions
 Don’t need to be experts on any kernel areas
 Don’t need to fix the bugs!
 Know what state a release is in
 and how Linux is doing on the bugginess scale

 (Slowly Developing) Technical writer generation

 Complex systems need documentation

 Internal documentation
 Needs maintenance

 Maintain man pages

 Future: Work on "great unified Linux documentation tree"?

 Developing: Destructive generation

 Stress kernels to find bugs that normal testers don’t hit
 fsx
 fsfuzzer

 Distributions have some people
 but they don’t work on mainline

 and some gotten from other OS

 More destruction

 Destroy a kernel ...

 ... and then write good a good bug report about it!

 Internal white box testing
 Inject errors

 Inject errors
 lockdep
 malloc failure tester

 More destroyers needed

 Future: The reviewer generation

 A Generation I would like to see

 Source code growing quickly
 Lots of new programms
 ... and Linux relies on code review to keep code quality high

 Reviewing bootle neck
 ... especially for "unsexy" code

 Reviewer generation II

 Maintainers do a lot of reviewing
 but they can’t do it all
 and there is often no clear maintainer

 Interest depends a lot on current hype level
 and the name of the submitter

 But for others it is hard to get review

 Good review

 Coding style is not all

 Really good review

 Proper review is a lot of work
 Maintainers can’t do all the low level review
 Often there is no clear maintainer

 People who read code well
 and are open minded
 and ask a lot of "stupid" questions
 look for simple logic errors
 recognize bad idioms
 like reading code

 Often state of the art in kernel debugging ...

 Debugging generation

 From "real men don’t need kernel debuggers" to ..

 ... tens of debugging options

 The tale of the standard debugger

 Crash dumps	

 Maintainer generation

 Kernel got a "middle management"
 Or even multiple levels

 (tongue-in-cheek) "... when one looks more at diffstat than
patches"

 Spend more time on reviewing / merging / bug triaging etc. than
hacking

 Better investment of time than directly hacking?

 LocalWords: dups mvc jpg

