Desktops on a Diet

Carsten Haitzler <raster@rasterman.com>
Enlightenment
http://www.enlightenment.org

mailto:raster@rasterman.com

Todays “Average” PC

1,210 (2005 USA “Average” PC — Gartner)
190 (OLPC Laptop 366Mhz x86, 128M RAM)

The Average Income (Australia)

» $43,600
» 36 Average PC's ($1,210)

Average income in China

* $1,635
* 1.35 Average PC's ($1,210)

What a PC costs in China

* Average PC costs the “equivalent” of $32,290
* OLPC “equivalent cost” is $5,060

Very unhappy users

* |f you went out tomorrow and spent $5000 on a
new PC and it couldn't run a Linux desktop —
you would call it ridiculous

* |f you had to spend $32,000 to get it to run —
you would be annoyed

* There needs to be more attention to trying to be
efficient

* It matters to people who are not as obscenely
rich as us

A comparison of Desktops

- GNOME 2.16.1

- KDE 3.5.5

- XFCE 4.3.99

- Enlightenment 0.16.999.037 (E17)

Comparisons of Desktops

Absolute memory usage from fresh boot

Memory Usage Only (Kb)

Console E XFCE GNOME KDE
Base Login 51608 76632 76088 75156 102680
After Login 51608 77096 100264 112668 119028
Launch Firefox 51608 99324 121816 134924 142076

Files 10 Access (Kb)

Console E XFCE GNOME KDE
Base Login
After Login

Launch Firefox

Relative Memory needs

Relative memory usage compared to base console system

Memory Usage Only (Kb) Relative to Console

Console E XFCE GNOME KDE
Base Login 0 25024 24480 23548 51072
After Login 0 25488 48656 61060 67420
Launch Firefox 0 47716 70208 83316 90468

Files 10 Access (Kb) Relative to Console

Console E XFCE GNOME KDE
Base Login
After Login

Launch Firefox

Relative Memory needs

Base Login

I Console
BE
J XFCE

Il GNOME
I KDE

After Login

Launch Firefox

|
25000 50000 75000 100000

o

Relative Disk 10 Usage

Base Login

] Console
BE

I XFCE
Il GNOME
Il KDE

After Login

Launch Firefox

| |
0 25000 50000 75000 100000 125000 150000

Login Times

Login time (Seconds)

Console

XFCE

GNOME

KDE

Uncached

3.3

9.5

13.7

16.4

Cached

0.9

2.5

3.2

8.3

Uncached

Cached

[Console
BE

I XFCE
Il GNOME
Il KDE

17.5

How do you get there?

« Care about people with lesser machines
* Do statistics and analysis

* Investigate techniques used elsewhere
* Think carefully about your designs

* Here are some things used for Enlightenment
development to get there

Time your code

ESTART: 0.00000 [0.00000] - begin

ESTART: 0.00015 [0.00014] - signals done
ESTART: 0.20644 [0.20630] - determine prefix
ESTART: 0.21657 [0.01013] - prefix done
ESTART: 0.21664 [0.00007] - intl init

ESTART: 0.21813 [0.00150] - parse args
ESTART: 0.21816 [0.00003] - arg parse done
ESTART: 0.64135 [0.42318] - edje init

ESTART: 0.64162 [0.00028] - ecore init
ESTART: 0.64179 [0.00017] - ecore file init
ESTART: 0.64194 [0.00015] - more ecore
ESTART: 0.64198 [0.00004] - x connect

ESTART: 1.74095 [0.00001] - load modules
ESTART: 2.01361 [0.27267] - gadcon

ESTART: 2.01364 [0.00003] - shelves

ESTART: 2.01366 [0.00001] - exebuf

ESTART: 2.01368 [0.00002] - desklock

ESTART: 2.01388 [0.00020] - add idle enterers
ESTART: 2.01452 [0.00064] - init properites
ESTART: 2.28726 [0.27274] - test code

ESTART: 2.28730 [0.00003] - shelf config init
ESTART: 3.47224 [1.18494] - MAIN LOOP AT LAST
ESTART: 3.57884 [0.10660] - SLEEP

How did this help?

 Removed useless X round-trips

* Removed pointless init code

 Allowed benchmarking when implementing disk
pre-caching

Pre-caching

* A technique several OS's use to pre-fetch data
from disk you probably will need

* Implemented as an LD _PRELOAD and a
logging mechanism, with replay

» Shaved uncached startup time in half once
implemented

* Currently is extremely naive and could be much
smarter with kernel help

Memprof

Little known tool

Tells you in great detail who allocated what
memory and where and how much

Helped identify lots of empty string (1 byte)
allocations that we removed with a string
sharing subsystem

Recently has started development again

Metacity Memory Use

File Process Settings Help

@ x O 4 @

Rur Kill Profile Leaks Save

Ok 4056k

of Allocations: 40365 Eytes | Allocation: 66.07 Total Bytes: 2666851

Profile | Laaks

Function Self Tatal Court Self Count Total

Children
Function Eytes Cournt

Callers

Furiction Bytes Court

Fluxbox Memory Use

File Process Settings Help

=
o X g g
Run Kl Profle Leaks Save
Ok

4086k
| |

of Allocations: 39742

Profile | Leaks

Eytes | Allocation: 59.88 Total Bytes: 2379626

Function Self Total Court Self Count Total
Children
Function Eytes Count
Callers
Function

Bytes Count

Enlightenment 0.17 Memory Use

File Process Settings Help

@ x £ 4 H

Run Kl Profle Leaks Save

ok 4096k
of Allocations: 12436 Eytes [Allocation: 198.05 Total Bytes: 2661050
Profile | Legks
Function elf Tatal Court Self | Count Total b=
eet_data_image_decode 919760 1425380 34 37
eet_data_image_jpeg_rgb_decode 505600 505600 3 3
evas_commen_image_surface_allac 136976 136976 27 27
avas_ohject_new 128960 126980 4&0 450
ecore_x_init 115498 123022 2615 2673
edie_object_file_set 103748 440431 260 2771
_eat_rmermi_alloc 27084 a7024 1751 1791
evas_common_fort_source_memory_load 72892 72976 22 32
_evas_mp_pool_new 7201e T20le 21 21
evas_stringshare_add 58209 58209 2275 2275
evas_hash_add 53807 63807 708 708
e_object_alloc 41168 41168 352 352
evas_common_fort_init 25776 25776 33 38
evas_object_image_add 22320 73656 136 372
a_alert_init 22018 22016 23 23
eat_data_descriptor_decode 20728 440134 197 9163
evas_cormmen_tilebuf_set tile_size 20845 20645 g 2
evas_mem_calloc 19920 19920 09 E09 [a]
acore_x_windaw_key_grab 19918 15918 335 335 =
Children
Furiction Bytes Court
Callers
Function Bytes Cournt

e_modapi_init 24 1

Did you know...

Every time a process Is executed — it is heavy

Every X (GTK+/Qt etc.) process needs to
connect, make lots of round-trip requests for
information and make its own copies of that
information

Different processes tend NOT to share
information and tend to duplicate effort

Add simple features as part of a larger program
or as a loadable .so module to save setup costs

Tips
* Don't execute another process unless you

REALLY need to

« Share data and resources as it is often
expensive to load/decode it multiple times

* Avoid the stampeding herd on startup

* Pre-cache data in memory to avoid waiting on
disk IO

* Profile, profile, profile
* Know your code

Enlightenment 0.17

* Aiming at the minimalist desktop (Desktop
Shell)

* Incredibly fast and lean

* Still able to look good with no high-end
hardware

* Finishing off all the basics you need to start
using your desktop — then release

* Future intentions to be able to use higher end
hardware with no loss to those without it

Enlightenment 0.17

* Follow standards

* Attention to detail and optimizations

* Extensible via modules

* Visually highly configurable

* Everything can be animated if desired

* Fast rendering engine (can use software,
Xrender, OpenGL and more).

* Multimedia capable

Enlightenment 0.17

* Evas Is a state engine

* You only manipulate simple state and don't do
expensive drawing most of the time

* Retains state so no need to optimise redraw
logic multiple times

* Abstracts the underlying rendering mechanisms
allowing for use of a new back-end if/when it
becomes feasible

Enlightenment 0.17

« Software (highly optimised)
» Xrender (full support)

* OpenGL (almost full support)
* Framebuffer

» Qtopia

* Others (Cairo, DirectFB)

Enlightenment 0.17

« Xcomposite does NOT make windows
fransparent

« Xcomposite does NOT provide fancy effects

* It ONLY provides for redirecting window
contents from the framebuffer to a pixmap that
can then be USED to do the above

e Uses LOTS of video RAM

Enlightenment 0.17

« Xrender can take 2 pixmaps and blend one on
the other, rotate and skew images and perform
other 2D “advanced” rendering

» Xrender is the “right” API for doing compositing
and other advanced 2D tasks

* Has limited rendering quality
* |s mostly unaccelerated and very SLOW
* |s still “the future”

Enlightenment 0.17

* Only open drivers for ATI R200 series chips
accelerate Xrender

* No closed drivers accelerate it

* Vendors seemingly not interested in
implementing it

* Requires knowledge of advanced chipset
features which are kept closed

* Forces us to do “hacks” via OpenGL

Enlightenment 0.17

* Eet (data file storage and compression)
* Evas (2D graphics abstraction)

* Ecore (main loop, events and X, etc.
abstractions)

* Embryo (tiny virtual machine engine — much
smaller than LUA and much faster than even

Java)
* Edje (theme object engine)

Efficiency...

* Buys you the ablility to do much more with less

* Allows you to scale DOWN even to embedded
devices (100+Mhz ARM etc.)

 Allows those with less $ to enjoy more
eyecandy and features

* Shows you care

Enlightenment 0.17

* Pants (Demo time)

