
Linux on the Cell Broadband Engine

Arnd Bergmann <arnd@arndb.de>

January 16, 2007

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Outline

Cell Broadband Engine Processor
Cell Overview
Synergistic Processing Elements
Memory Access Times

Linux run time
Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

Application Development
GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Cell Overview
Synergistic Processing Elements
Memory Access Times

Cell Broadband Engine Processor

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Cell Overview
Synergistic Processing Elements
Memory Access Times

Cell Broadband Engine Processor

PPE

PPU

L1/L2 Cache

 Mem

SPE 1

I/O Memory

EIB

SPU MFC
MFC

SPE2

SPE 8

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Cell Overview
Synergistic Processing Elements
Memory Access Times

Features per SPE

I 128 bit SIMD
I 128 registers
I 3.2 Ghz clock speed
I 256 KiB local memory
I Memory flow controller for DMA
I 25 GB/s DMA data transfer
I “I/O Channels” for IPC
I No protected instructions

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Cell Overview
Synergistic Processing Elements
Memory Access Times

Registers

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Cell Overview
Synergistic Processing Elements
Memory Access Times

L1 Cache

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Cell Overview
Synergistic Processing Elements
Memory Access Times

L2 Cache

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Cell Overview
Synergistic Processing Elements
Memory Access Times

Main Memory

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Cell Overview
Synergistic Processing Elements
Memory Access Times

File System

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

Linux on Cell/B.E. kernel components

I Platform abstraction
arch/powerpc/platforms/{cell,ps3,beat}

I Integrated Interrupt Handling
I I/O Memory Management Unit
I Power Management
I Hypervisor abstractions
I South Bridge drivers (Spider, SCC, Axon)
I SPU file system

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

SPU file system

I Virtual File System
I /spu holds SPU contexts as directories
I Files are primary user interfaces
I New system calls: spu create and spu run
I SPU contexts abstracted from real SPU
I Preemptive context switching (W.I.P)

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

spu create

int spu create(const char *pathname, int flags, mode t mode);
I creates a new context in pathname
I returns an open file descriptor
I context is gets destroyed when fd is closed

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

spu run

uint32 t spu run(int fd, uint32 t *npc, uint32 t *status);
I transfers flow of control to SPU context fd
I returns when the context has stopped for some reason,

e.g.
I exit or forceful abort
I callback from SPU to PPU
I can be interrupted by signals

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

SPE execution control

Application

Kernel

SPE

spu_run

set
RUNNABLE

stop and signal

return

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

SPE execution control – signals

Application

Kernel

SPE

spu_run system
call restart

set
RUNNABLE

“trap
”

signal handler
invocation

Similar flow of
control for PPE
assisted SPE
system calls

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

SPE memory management

I Memory Flow Controller does DMA
I SPE local store < − > Process Virtual memory
I Page faults handled in spu run

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

Asynchronous DMA

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

Virtual mapping

may include
I RAM
I Files
I Other SPEs
I I/O devices

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

PPE programming interfaces

I Asynchronous SPE thread API (“libspe 1.x”)
I spe create thread
I spe wait
I spe kill
I . . .

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

spe create thread implementation

I Allocate virtual SPE (spu create)
I Load SPE application code into context
I Start PPE thread using pthread create
I New thread calls spu run

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

libspe sample code

#include <libspe.h>
int main(int argc, char *argv[], char *envp[])
{

spe_program_handle_t *binary;
speid_t spe_thread;
int status;

binary = spe_open_image(argv[1]);
if (!binary)

return 1;
spe_thread = spe_create_thread(0, binary, argv+1, envp, -1, 0);
if (!spe_thread)

return 2;

spe_wait(spe_thread, &status, 0);
spe_close_image(binary);
return status;

}

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

libspe sample code

#include <libspe.h>
int main(int argc, char *argv[], char *envp[])
{

spe_program_handle_t *binary;
speid_t spe_thread;
int status;

binary = spe_open_image(argv[1]);
if (!binary)

return 1;
spe_thread = spe_create_thread(0, binary, argv+1, envp, -1, 0);
if (!spe_thread)

return 2;

spe_wait(spe_thread, &status, 0);
spe_close_image(binary);
return status;

}

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

libspe sample code

#include <libspe.h>
int main(int argc, char *argv[], char *envp[])
{

spe_program_handle_t *binary;
speid_t spe_thread;
int status;

binary = spe_open_image(argv[1]);
if (!binary)

return 1;
spe_thread = spe_create_thread(0, binary, argv+1, envp, -1, 0);
if (!spe_thread)

return 2;

spe_wait(spe_thread, &status, 0);
spe_close_image(binary);
return status;

}

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

Linux kernel on Cell/B.E.
SPU system calls
SPE exploitation from user space

More libspe interfaces

I Event notification
I int spe get event(struct spe event *,

int nevents, int timeout);
I Message passing

I spe read out mbox(speid t speid);
I spe write in mbox(speid t speid);
I spe write signal(speid t speid, unsigned reg,

unsigned data);
I Local store access

I void *spe get ls(speid t speid);

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

GNU tool chain

I PPE support
I Just another PowerPC variant. . .

I SPE support
I Just another embedded processor. . .

I Cell/B.E. support
I More than just PPE + SPE!

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

Object file format

I PPE: regular ppc/ppc64 ELF binaries
I SPE: new ELF flavour EM SPU

I 32-bit big-endian
I No shared libraries
I Manipulated via cross-binutils
I New: Code overlay support

I Cell/B.E.: combined object files
I embedspu: link into one binary
I .rodata.spuelf section in PPE object
I CESOF: SPE− >PPE symbol references

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

gcc on the PPE

I handled by “rs6000” back end
I Processor-specific tuning
I pipeline description

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

gcc on the SPE

I Merged Jan 3rd
I Built as cross-compiler
I Handles vector data types, intrinsics
I Middle-end support: branch hints, aggressive if-conversion
I GCC 4.1 port exploiting auto-vectorization
I No Java

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

Combined Cell/B.E.

I Nothing for gcc yet
I single-source?
I OpenMP?
I some work from

Barcelona Supercomputing Center

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

SPE Application Binary Interface

I Register usage
I R0: link register, R1: stack pointer, R2: volatile
I R3-R79: function arguments & return value, volatile
I R80-R127: local variables, non-volatile

I Stack frame

Back chain

Link register save area

Overflow argument area

Local variable space

Register save area

Previous back chain

SP

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

Cell/B.E. architecture documents

I Cell Broadband Engine Architecture
I SPU Instruction Set Architecture
I SPU Application Binary Interface Specification
I SPU Assembly Language Specification
I SPU C/C++ Language Extensions
I http://cell.scei.co.jp/

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

http://cell.scei.co.jp/

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

SPU-GDB operating modes

I Debug stand-alone SPE binary
I Kernel support via binfmt misc required
I Allows to execute the full GDB test suite

I Attach to single SPE thread of running Cell application
I Use simplified by debug assists in libspe runtime:

print Linux PID of SPE thread on startup and wait for GDB
attach

I Remote debugging support via gdbserver
I Combined PPE/SPE debugging

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

SPE debugger – process state access

Debugged
SPE thread

Linux kernel Debugger

PPE registers

PPE memory

SPE registers

SPE memory

ptrace

spufs

Access PPE state via
ptrace, and analyze it

Result: PPE thread is
blocked inside spu_run
system call on spufs
directory D

Access SPE state of
context in spufs
directory D via spufs
file operations

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

SPE debugger – execution control

Application

Kernel

SPE

spu_run system
call re-issued

set
RUNNABLE

“breakpoint”

return
from
ptrace call

Debugger
ptrace
(PT_CONT)

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

Remote debugging

I Extensions to the gdbserver protocol required
I Remote access to spufs file contents

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

Post-mortem debugging

I Core files:
I LOAD sections for PPE memory
I NOTE sections for per-thread PPE registers

I SPE support:
I Additional NOTE sections per virtual SPE
I Kernel support in 2.6.20

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

Existing proprietary applications

I Games
I Volume rendering
I Real-time Raytracing
I Digital Video
I Monte Carlo simulation

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

Obviously missing

I ffmpeg, mplayer, VLC
I VDR, mythTV
I Xorg acceleration
I OpenSSL

I Your project here

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Cell Broadband Engine Processor
Linux run time

Application Development

GNU tool chain for Cell/B.E.
GCC support
GDB support
What to do with it

Obviously missing

I ffmpeg, mplayer, VLC
I VDR, mythTV
I Xorg acceleration
I OpenSSL
I Your project here

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Questions

Questions?

Questions?

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

Questions

Credits

I Kernel, device drivers
I Akira Iguchi, Benjamin Herrenschmidt Christian Krafft,

Christophe Lamoureux, Geert Uytterhoeven, Geoff Levand,
Ishizaki Kou, Jean-Christophe Dubois, Jens Osterkamp,
Jeremy Kerr, Jim Lewis, Kevin Corry, Linas Vepstas,
Maynard Johnson, Michael Ellerman

I SPU File System
I Christoph Hellwig, Jeremy Kerr, Mark Nutter,

Masato Noguchi
I SPE Library

I Daniel Brokenshire, Dirk Herrendoerfer, Gerhard Stenzel,
Kazunori Asayama

I Tool Chain
I Andrew Pinski, Dwayne McConnell, Joel Schopp,

Sidney Manning, Ulrich Weigand

Arnd Bergmann <arnd@arndb.de> Linux on the Cell/B.E.

	one
	Cell Broadband Engine Processor
	Cell Overview
	Synergistic Processing Elements
	Memory Access Times

	Linux run time
	Linux kernel on Cell/B.E.
	SPU system calls
	SPE exploitation from user space

	Application Development
	GNU tool chain for Cell/B.E.
	GCC support
	GDB support
	What to do with it

	two
	Questions

