Eat My Data:

How everybody gets
file 1/0O wrong

Stewart Smith
stewart@flamingspork.com

Software Engineer, MySQL Cluster
MySQL AB

mailto:stewart@flamingspork.com

What | work on

MySQL Cluster
High Availability
(Shared Nothing) Clustered Database

with some real time properties

Overview

e Common mistakes that lead to data loss

Overview

e Common mistakes that lead to data loss
* Mistakes by:

- the application programmer

Overview

e Common mistakes that lead to data loss
* Mistakes by:

- the application programmer
- the library programmer

Overview

e Common mistakes that lead to data loss
* Mistakes by:

- the application programmer
- the library programmer

- the kernel programmer

Overview

e Common mistakes that lead to data loss
* Mistakes by:

- the application programmer
- the library programmer

- the kernel programmer
* Mostly just concentrating on Linux

— will mention war stories on other platforms too

In the beginning

* All IO was synchronous

In the beginning

* All IO was synchronous
* When you called write things hit the platter

In the beginning

* All IO was synchronous
* When you called write things hit the platter
* Turns out that this is slow for a lot of cases

A world without failure

A world without failure

e doesn't exist

A world without failure

* doesn't exist
* computers crash

A world without failure

* doesn't exist
* computers crash
* power goes out

A world without failure

* doesn't exist
* computers crash

* power goes out
— battery goes flat

A world without failure

* doesn't exist
* computers crash

* power goes out

— battery goes flat
- kick-the-cord out

A world without failure

* doesn't exist
* computers crash

* power goes out

— battery goes flat
— kick-the-cord out
- suspend works, resume doesn't

A world without failure

* doesn't exist
* computers crash

* power goes out

— battery goes flat
— kick-the-cord out
- suspend works, resume doesn't

* When the data is important, live in the world of
failure

Data Consistency

* In the event of failure, what state can | expect
my data to be in?

User Expectations

* |f the power goes out, the last saved version of
my data is there

User Expectations

* |f the power goes out, the last saved version of
my data is there

* If there isn't an explicit save (e.g. RSS readers,
IM logs) some recent version should be okay.

User Expectations

* |f the power goes out, the last saved version of
my data is there

* If there isn't an explicit save (e.g. RSS readers,
IM logs) some recent version should be okay.
* Not Acceptable:
- | hit save, why is none of my work there?
- Why have all my IM logs disappeared?
- Why have all my saved passwords disappeared?

Databases

Databases

* ACID

Databases

 ACID
— D is for Durability

Databases

« ACID
— D is for Durability
* Transactions

- A committed transaction survives failure

Databases

 ACID

— D is for Durability
* Transactions

- A committed transaction survives failure
* |solation Levels

- Repeatable Read, Read Committed etc

Databases

 ACID

— D is for Durability
* Transactions

- A committed transaction survives failure
* |solation Levels

- Repeatable Read, Read Committed etc
* Very well known consistency issues

Databases

 ACID

— D is for Durability
* Transactions

- A committed transaction survives failure
* |solation Levels

- Repeatable Read, Read Committed etc
* Very well known consistency issues

— that lots of people still get wrong

Databases

 ACID

— D is for Durability
* Transactions

- A committed transaction survives failure
* |solation Levels

- Repeatable Read, Read Committed etc
* Very well known consistency issues

— that lots of people still get wrong
— different engines have different properties

What databases are good at

* Lots of small objects (rows)

What databases are good at

* Lots of small objects (rows)
* okay at larger objects (BLOBS)

What databases are good at

* Lots of small objects (rows)
* okay at larger objects (BLOBS)

- named after “The Blob”, not Binary Large Objects

What databases are good at

* Lots of small objects (rows)
* okay at larger objects (BLOBS)

- named after “The Blob”, not Binary Large Objects
* Accessed by a variety of ways

- Indexes

Easy solution to data consistency

* put it in a database

- that gives data consistency guarantees
 We'll talk about this later

Revelation #1

* Databases are not file systems!

Revelation #2

* File systems are not databases!

Revelation #3

* A database has different consistency semantics
than a file system

Revelation #3

* A database has different consistency semantics
than a file system

- typically file systems a lot more relaxed

Eat my data

 Where can the data be to eat?

Where data can be

* Application Buffer - CoolApp

— application crash = loss of this data

Where data can be

* Application Buffer - CoolApp
— application crash = loss of this data
* Library buffer - glibc

— application crash = loss of this data

Where data can be

* Application Buffer - CoolApp
— application crash = loss of this data
* Library buffer - glibc
— application crash = loss of this data
* Operating System buffer — page/buffer cache

- system crash = loss of this data

Where data can be

* Application Buffer - CoolApp
— application crash = loss of this data

* Library buffer - glibc
— application crash = loss of this data

* Operating System buffer — page/buffer cache
- system crash = loss of this data

* on disk

— disk failure = loss of data

Data flow

* Application to library buffer
- fwrite(), fprintf() and friends

Data flow

* Application to library buffer

- fwrite(), fprintf() and friends

* Library to OS buffer
- write(2)

Data flow

* Application to library buffer
- fwrite(), fprintf() and friends
* Library to OS buffer
- write(2)
* OS buffer to disk

Data flow

* Application to library buffer
- fwrite(), fprintf() and friends
* Library to OS buffer
- write(2)
* OS buffer to disk

— paged out, periodic flushing (5 or 30secs usually)

Data flow

* Application to library buffer
- fwrite(), fprintf() and friends
* Library to OS buffer
- write(2)
* OS buffer to disk

— paged out, periodic flushing (5 or 30secs usually)
» Can be very delayed with laptop mode

Data flow

* Application to library buffer
- fwrite(), fprintf() and friends
* Library to OS buffer
- write(2)
* OS buffer to disk

— paged out, periodic flushing (5 or 30secs usually)
» Can be very delayed with laptop mode
- fsync(2), fdatasync(2), sync(2)

Data flow

* Application to library buffer
- fwrite(), fprintf() and friends
* Library to OS buffer
- write(2)
* OS buffer to disk

— paged out, periodic flushing (5 or 30secs usually)
» Can be very delayed with laptop mode
- fsync(2), fdatasync(2), sync(2)

e with caveats!

Simple Application: Save==0n disk

e User hits “Save” in Word Processor
- Expects that data to be on disk when “Saved”
e How?

Saving a simple document

struct wp doc {

char *document;
size t len;

}

struct wp doc d;

FILE *f:

f= fopen(“important document”,”w"”);
fwrite(d.document,d.len,1,f):

Bug #1

* No fclose(2)

- Buffers for the stream may not be flushed from libc
cache

Word Processor Saving -1 Bug

struct wp doc {
char *document;
size t len;

s

struct wp doc d;

FILE *f;

f= fopen(“important document”,”w"”);
fwrite(d.document,d.len,1,f);
fclose(T);

Bug #2, 3 and 4

* No error checking!
* fopen
- Did we open the file
e fwrite
- did we write the entire file (ENOSPC?)
* fclose

— did we successfully close the file

File System Integrity

* metadata journaling is just that

File System Integrity

* metadata journaling is just that

- metadata only

File System Integrity

* metadata journaling is just that

- metadata only
- no data is written to the journal

File System Integrity

* metadata journaling is just that

- metadata only
- no data is written to the journal
- integrity of file system structures

File System Integrity

* metadata journaling is just that

- metadata only

- no data is written to the journal
- integrity of file system structures
- not internals of files

Data journaling

* Is nothing like a database transaction

Atomic write(2)

Atomic write(2)

e |ltisn't

Atomic write(2)

e |tisn't
* can half complete

Atomic write(2)

* ltisn't
* can half complete
* A file system with atomic write(2)

Atomic write(2)

* ltisn't
* can half complete
* A file system with atomic write(2)

— can't rely on it being there

Atomic write(2)

* ltisn't
* can half complete
* A file system with atomic write(2)

— can't rely on it being there
- Essentially useless

Eat My Data

struct wp doc {
char *document;
size t len;

s

struct wp doc d;

FILE *f;

f= fopen(“important document”,”w");
fwrite(d.document,d.len,1,f); <« CRASH
fclose(f);

Write to Temp file, rename

 Old trick of writing to temp file first

Write to Temp file, rename

 Old trick of writing to temp file first

« Can catch any errors
- e.9. ENOSPC

Write to Temp file, rename

 Old trick of writing to temp file first

« Can catch any errors

- e.9. ENOSPC
- don't rename on error

Write to Temp file, rename

 Old trick of writing to temp file first

« Can catch any errors

- e.9. ENOSPC
- don't rename on error

* |dea that if we crash during writing temp file
user data is safe

Write to Temp file, rename

 Old trick of writing to temp file first

« Can catch any errors

- e.9. ENOSPC
- don't rename on error

* |dea that if we crash during writing temp file
user data is safe

- although we may leave around a temp file

Temp file, rename

struct wp doc {
char *document;
size t len;

¥

struct wp doc d;

FILE *f,

f= fopen(“important_document.temp”,”w");
if(!'f) return errno;

size t w= fwrite(d.document,d.len,1,f);
if(w<d.len) return errno;

fclose(f);

rename(“important_document.temp”,”important_document”);

Now all is good with the world...

Now all is good with the world...

* This is where a lot of people stop

Now all is good with the world...

* This is where a lot of people stop
* close(2) and rename(2) do not imply sync

close and
rename do nhot
Imply sync

Now all is good with the world...

* This is where a lot of people stop
* close(2) and rename(2) do not imply sync

* They make no guarantees on when (or in what
order) changes hit the platter

Now all is good with the world...

* This is where a lot of people stop
* close(2) and rename(2) do not imply sync

* They make no guarantees on when (or in what
order) changes hit the platter

* Quite possible (and often) metadata is flushed
before data

File System Integrity

 data=ordered mode on ext3

— writes data before metadata
— other file systems are different

File System Integrity

 data=ordered mode on ext3
— writes data before metadata

— other file systems are different

* ext3 ordered mode is an exception, not the
rule

File System Integrity

 data=ordered mode on ext3

— writes data before metadata
— other file systems are different

* ext3 ordered mode is an exception, not the
rule

— applications relying on this are not portable and
depend on file system behaviour. the applications
are buggy.

data=ordered

write()
close()
rename()
Disk order:

- data from fwrite()
- inode
— directory entry

other systems

write()
close()
rename()
Disk order:

- any!

flush and sync

struct wp doc {

char *document;
size t len;
};

struct wp doc d;

FILE *f,

f= fopen(“important document.temp”,”w”);

if(!'f) return errno;

size t w= fwrite(d.document,d.len,1,f);

if(w<d.len) return errno;

1f(fflush(f)'!'=0) return errno; -« Flush the butters!
if(fsync(fileno(f))==-1) return errno;<= Sync to disk before

fclose(T); rename

rename (“important document.temp”,”important document”);

A tale of libxml2

* libxml2 provides utility functions to “write XML
to file”

A tale of libxml2

* libxml2 provides utility functions to “write XML
to file”

* Nice application developer saves time by using
liboxml2's function

A tale of libxml2

* libxml2 provides utility functions to “write XML
to file”

* Nice application developer saves time by using
liboxml2's function

— Application developer writes to temp file, renames

A tale of libxml2

* libxml2 provides utility functions to “write XML
to file”

* Nice application developer saves time by using
liboxml2's function

— Application developer writes to temp file, renames
— User looses data after crash

A tale of libxml2

* libxml2 provides utility functions to “write XML
to file”

* Nice application developer saves time by using
liboxml2's function

— Application developer writes to temp file, renames
— User looses data after crash

— Nice application developer has to work around
limitations of library

S0, replace

* xmlSaveFile(foo)

gint common save xml(xmlDocPtr doc, gchar *filename) {

FILE *fp;
char *xmlbuf;
int fd, n;

fp = g fopen(filename, "w");
if(NULL == fp)
return -1;

xmlDocDumpFormatMemory(doc, (xmlChar **)&xmlbuf, &n, TRUE);

if(n <= 0) {
errno = ENOMEM;
return -1;

}

if(fwrite(xmlbuf, sizeof (xmlChar), n, fp) < n) {
xmlFree (xmlbuf);
return -1;

}

xmlFree (xmlbuf);

/* flush user-space buffers */
if (fflush (fp) !'= 0)

return -1;
if ((fd = fileno (fp)) == -1)
return -1;

#ifdef HAVE_FSYNC
/* sync kernel-space buffers to disk */
if (fsync (fd) == -1)
return -1;
#endif

fclose(fp);

return 0;

Nearing Nirvana

* If any failure during writing, the previously
saved copy Is untouched and safe

- User wont get partial or no data

Except if you want to be portable...

* On Linux, fsync(2) does actually sync

- barring enabling write cache

Except if you want to be portable...

* On Linux, fsync(2) does actually sync

- barring enabling write cache
 On MacOS X,

Except if you want to be portable...

* On Linux, fsync(2) does actually sync

- barring enabling write cache
* On MacOS X, not so much

on fsync, POSIX Says...

e [f POSIX SYNCHRONIZED 1O is not defined,
the wording relies heavily on the conformance
document to tell the user what can be expected

from the system. It is explicitly intended that a
null implementation is permitted.

on fsync, POSIX Says...

e [f POSIX SYNCHRONIZED 1O is not defined,
the wording relies heavily on the conformance
document to tell the user what can be expected
from the system. It is explicitly intended that
a null implementation is permitted.

POSIX compliant fsync

int fsync(int fd)

POSIX compliant fsync

int fsync(int fd)
{

POSIX compliant fsync

int fsync(int fd)
{

return O:

POSIX compliant fsync

int fsync(int fd)
{

return O:

}

POSIX compliant fsync

int fsync(int fd)

{ gcc

return O:

}

POSIX compliant fsync

int fsync(int fd)
pushl %ebp
{ gce movl %esp, Y%ebp
- movl $0, %eax
popl %ebp
return O; ret

Tale of a really fast database server

* A while ago (pre MySQL 4.1.9)

Tale of a really fast database server

* A while ago (pre MySQL 4.1.9)
* Seeing corruption of InnoDB pages

Tale of a really fast database server

* A while ago (pre MySQL 4.1.9)

* Seeing corruption of InnoDB pages
- only on MacQOS X

Tale of a really fast database server

* A while ago (pre MySQL 4.1.9)

* Seeing corruption of InnoDB pages
- only on MacQOS X

* Also, things seemed pretty fast

fsync() doesn't have to sync

* On MacOS X, fsync() doesn't flush drive write
cache

fsync() doesn't have to sync

* On MacOS X, fsync() doesn't flush drive write
cache

* An extra fcntl is provided to do this

Standards are great

* everybody has their own

Standards are great

* everybody has their own

* makes application developers life difficult

Standards are great

* everybody has their own

* makes application developers life difficult

* Let's see the InnoDB code for ensuring data is
synced to disk

Standards are great

* everybody has their own

* makes application developers life difficult

* Let's see the InnoDB code for ensuring data is
synced to disk

— if this doesn't work, transactions don't work

#1fdef HAVE DARWIN THREADS
ifdef F FULLFSYNC
/* This executable has been compiled on Mac 0S X 10.3 or later.
Assume that F FULLFSYNC is available at run-time. */
srv_have fullfsync = TRUE;
else /* F FULLFSYNC */
/* This executable has been compiled on Mac 0S X 10.2
or earlier. Determine if the executable 1s running
on Mac 0S X 10.3 or later. */
struct utsname utsname;
1f (uname(&utsname)) {
fputs("InnoDB: cannot determine Mac 0S X version!\n", stderr);
} else {
srv_have fullfsync = strcmp(utsname.release, "7.") >= 0;
}

if (!srv_have fullfsync) {
fputs("InnoDB: On Mac 0S X, fsync() may be"
" broken on internal drives,\n"
"InnoDB: making transactions unsafe!\n", stderr);

}
endif /* F_FULLFSYNC */

#endif /* HAVE DARWIN THREADS */

#1f defined(HAVE DARWIN THREADS)
ifndef F _FULLFSYNC
/* The following definition is from the Mac 0S X 10.3 <sys/fcntl.h> */
define F_FULLFSYNC 51 /* fsync + ask the drive to flush to the media */
elif F FULLFSYNC != 51
error "F_FULLFSYNC != 51: ABI incompatibility with Mac 0S X 10.3"
endif
/* Apple has disabled fsync() for internal disk drives in 0S X. That
caused corruption for a user when he tested a power outage. Let us in
0S X use a nonstandard flush method recommended by an Apple
engineer. */

if (!srv_have fullfsync) {
/* If we are not on an operating system that supports this,
then fall back to a plain fsync. */

ret = fsync(file);
} else {
ret = fcntl(file, F_FULLFSYNC, NULL);

if (ret) {
/* If we are not on a file system that supports this,
then fall back to a plain fsync. */
ret = fsync(file);
}
}
#elif HAVE FDATASYNC
ret = fdatasync(file);
#else
/* fprintf(stderr, "Flushing to file %p\n", file); */
ret = fsync(file);
#endif

Yes, some OS Vendors hate you

* Thanks to all the permutations of reliably getting
data to a disk platter, a simple call is now two
screens of code

Big Files

Big Files

* Write to temp file, sync, rename works badly
with large files

Big Files

* Write to temp file, sync, rename works badly
with large files

— especially frequently modified large files

Big Files

* Write to temp file, sync, rename works badly
with large files

— especially frequently modified large files
* Time to start REDO/UNDO logging

Big Files

* Write to temp file, sync, rename works badly
with large files

— especially frequently modified large files
* Time to start REDO/UNDO logging

— other cool tricks

Big Files

* Write to temp file, sync, rename works badly
with large files

— especially frequently modified large files
* Time to start REDO/UNDO logging

— other cool tricks
* Or not care so much

- e.g. DVD ripping

Big Files

* Write to temp file, sync, rename works badly
with large files

— especially frequently modified large files
* Time to start REDO/UNDO logging
— other cool tricks
* Or not care so much
- e.g. DVD ripping
* Some video software saves frame-per-file

Large directories

* Traditional directory is stored on disk as list of
name,inode

Large directories

* Traditional directory is stored on disk as list of
name,inode

* lookup is search through this list

Large directories

* Traditional directory is stored on disk as list of
name,inode

* lookup is search through this list

* Allocation of disk space to directories is block-
at-a-time, leading to fragmentation

Large directories

* Traditional directory is stored on disk as list of
name,inode

* lookup is search through this list

* Allocation of disk space to directories is block-
at-a-time, leading to fragmentation

* Directory indexes help

- some better than others

Large directories

* Traditional directory is stored on disk as list of
name,inode

* lookup is search through this list

* Allocation of disk space to directories is block-
at-a-time, leading to fragmentation

* Directory indexes help
- some better than others
« Can't always control the file system

— count on over a few thousand files being slow

Where data is after being written

* txns in Dbs often committed but only written to
log, not main data file

Where data is after being written

* txns in Dbs often committed but only written to
log, not main data file

* same with file systems

- metadata that's replayed from the log is committed

Where data is after being written

* txns in Dbs often committed but only written to
log, not main data file

* same with file systems
- metadata that's replayed from the log is committed

* Don't rely on reading the raw disk of a mounted
fs

Where data is after being written

* txns in Dbs often committed but only written to
log, not main data file

* same with file systems
- metadata that's replayed from the log is committed

* Don't rely on reading the raw disk of a mounted
fs

- 1t harms Kkittens,

Where data is after being written

* txns in Dbs often committed but only written to
log, not main data file

* same with file systems
- metadata that's replayed from the log is committed

* Don't rely on reading the raw disk of a mounted
fs

- It harms Kittens, puppies

Where data is after being written

* txns in Dbs often committed but only written to
log, not main data file

* same with file systems
- metadata that's replayed from the log is committed

* Don't rely on reading the raw disk of a mounted
fs

— It harms Kittens, puppies and babies

sqlite

* Many applications have structured data

sqlite

* Many applications have structured data
* Can be (easily) represented in RDBMS

sqlite

* Many applications have structured data
* Can be (easily) represented in RDBMS
* sqglite is ACID with a capital D for Durability

sqlite

* Many applications have structured data

* Can be (easily) represented in RDBMS

* sqglite is ACID with a capital D for Durability
* takes hard work out of things

sqlite

* Many applications have structured data

* Can be (easily) represented in RDBMS

* sqglite is ACID with a capital D for Durability
* takes hard work out of things

* Not so good with many clients

sqlite

Many applications have structured data
Can be (easily) represented in RDBMS
sqglite is ACID with a capital D for Durability
takes hard work out of things

Not so good with many clients

Brilliant for a document format though

sqlite

* Many applications have structured data

* Can be (easily) represented in RDBMS

* sqglite is ACID with a capital D for Durability
* takes hard work out of things

* Not so good with many clients

* Brilliant for a document format though

* Scales up to “a few dozen GB of data” before
not being as efficient as other RDBMs

Performance of Large files

* Once in core, page to disk location is cached

- other OSs may vary

Performance of Large files

* Once in core, page to disk location is cached
- other OSs may vary
* Performance difference is in initial lookup

Performance of Large files

* Once in core, page to disk location is cached
- other OSs may vary
* Performance difference is in initial lookup

* Extents based file systems much more efficient

Performance of Large files

* Once in core, page to disk location is cached
- other OSs may vary
* Performance difference is in initial lookup

* Extents based file systems much more efficient
* Zeroing takes long time

— support for unwritten extents means fast zeroing
- think CREATE TABLESPACE

- think bittorrent

Direct blocks

Double indirect

blocks

Indirect Blocks

inode

Infos

v /
// =

Extent

start disk block
start file block
length

flags

- e.g. unwritten

Parallel writers

* Multiple threads writing large files

Parallel writers

* Multiple threads writing large files

* Not uncommon to compete for disk allocation
- especially with O_SYNC

Parallel writers

* Multiple threads writing large files

* Not uncommon to compete for disk allocation
- especially with O_SYNC
* Files can get interweaved ababab

- extent based file systems suffer
- reading performance suffers
— especially with slow growing files

Parallel writers

Multiple threads writing large files

Not uncommon to compete for disk allocation
- especially with O_SYNC
Files can get interweaved ababab

- extent based file systems suffer
- reading performance suffers

— especially with slow growing files
Preallocate disk space

— with no standard way to do it... (

Preallocation

» Often the file system will do it for you
— doesn't work as well with O_SYNC
* No (useful) standard way to preallocate space

- posix_fallocate doesn't work
— xfsctl for files on XFS

Tablespace allocation in NDB

#ifdef HAVE XFS XFS H
if(platform test xfs fd(theFd))
{

ndbout c("Using xfsctl(XFS IOC RESVSP64) to allocate disk
space");

xfs flocke4 t fL;

fl.l whence= 0;

fl.l start= 0;

fl.l len= (off64 t)sz;

if(xfsctl(NULL, theFd, XFS IOC RESVSP64, &fl) < 0)

ndbout c("failed to optimally allocate disk space");
}
#endif

#1fdef HAVE POSIX FALLOCATE

posix fallocate(theFd, 0, sz);
#endif

Improvements in mysql-test-run

* Would run several nodes on one machine

— each creating tablespace files
—alll0Ois O_SYNC

Improvements in mysql-test-run

* Would run several nodes on one machine

— each creating tablespace files
—alll0Ois O_SYNC

 number of extents for ndb dd basic
tablespaces and log files

- BEFORE this code: 57, 13, 212,95, 17, 113
- WITH this code : ALL 1 or 2 extents

Improvements in mysql-test-run

* Would run several nodes on one machine

— each creating tablespace files
—alll0Ois O_SYNC

 number of extents for ndb dd basic
tablespaces and log files

- BEFORE this code: 57, 13, 212,95, 17, 113
- WITH this code : ALL 1 or 2 extents

* 30 seconds reduction in each test that created
tablespaces

Library Developers

* No problem cannot be solved by Abstraction!

Library Developers

* No problem cannot be solved by Abstraction!
e ...and making it complex

Library Developers

* No problem cannot be solved by Abstraction!
e ...and making it complex

— mysys my_siat
MY STAT *my stat(const char *path, MY STAT
*stat area, myf my flags)

Library Developers

* No problem cannot be solved by Abstraction!
e ...and making it complex

— mysys my_siat
MY STAT *my stat(const char *path, MY STAT
*stat area, myf my flags)

- versus POSIX stat

int stat(const char *path, struct stat *buf);

Library Developers

* No problem cannot be solved by Abstraction!

e ...and making it complex

— mysys my_siat
MY STAT *my stat(const char *path, MY STAT
*stat area, myf my flags)

- versus POSIX stat

int stat(const char *path, struct stat *buf);

- my_fstat (grrr)
int my fstat(int Filedes, MY STAT *stat area, myf
MyFlags attribute ((unused)))

Library Developers

* No problem cannot be solved by Abstraction!
e ...and making it complex

— mysys my_siat
MY STAT *my stat(const char *path, MY STAT
*stat area, myf my flags)

- versus POSIX stat

int stat(const char *path, struct stat *buf);

- my_fstat (grrr)

int my fstat(int Filedes, MY STAT *stat area, myf
MyFlags attribute ((unused)))

- versus POSIX fstat
int fstat(int filedes, struct stat *buf);

There Is hope

* You can do file 1O correctly
* You can prevent data loss
* You can pester people to make life easier

Good Luck!

Good Luck!

* and please don't eat my data

