M aking TheLmnuxNFS
S g i Server Suck Faster

FOR RESULTS

G reg Banks <gnb@ m eboumesgicom >
File Serving T echnologies,
Silicon G raphics, Inc

Overview

 Introduction
* Principles of Operation
» Performance Factors
« Performance Results
* Future Work
« Questions?

..
Slide 2 S g 'l
INNOVATION

Linux.conf.au Sydney Jan 2007

FOR RESULTS’

« SGI doesn't just make honking great compute servers
« also about storage hardware

« and storage software

* NAS Server Software

..
Slide 3 S l
Linux.conf.au Sydney Jan 2007

INNOVATION

FOR RESULTS’

* NAS = Network Attached Storage

« your data on a RAID array

 attached to a special-purpose machine with network
interfaces

Access data over the network via file sharing protocols
CIFS

ISCSI

FTP

NFS

NFS: a common solution for compute cluster storage
freely available

known administration

no inherent node limit

simpler than cluster filesystems (CXFS, Lustre)

Anatomy of a Compute Cluster

 today's HPC architecture of choice
* hordes (2000+) of Linux 2.4 or 2.6 clients

Anatomy of a Compute Cluster

node: low bandwidth or IOPS
1 Gigabit Ethernet NIC

server: large aggregate bandwidth or IOPS
multiple Gigabit Ethernet NICs...2 to 8 or more

Anatomy of a Compute Cluster

 global namespace desirable
« sometimes, a single filesystem
« Ethernet bonding or RR-DNS

SGl's NAS Server

« SGl's approach: a single honking great server
 global namespace happens trivially

 large RAM fit

« shared data & metadata cache
 performance by scaling UP not OUT

SGl's NAS Server

* |A64 Linux NUMA machines (Altix)
 previous generation: MIPS Irix (Origin)
« small by SGl's standards (2 to 8 CPUs)

Building Block

Altix A350 “brick”

2 ltanium CPUs

12 DIMM slots (4 — 24 GiB)
lots of memory bandwidth

ﬁ

NUMAIink
—

2 x Gigabit Etherne?
lh

2 x FibreChannelj

FOR RESULTS’

Building Block

« 4 x 64bit 133 MHz PCI-X slots |_|_|- -

« 2 Gigabit Ethernets

« RAID attached
with FibreChannel

ltanium

ﬁ

NUMAIink
—

ltanium

2 x Gigabit Ethernefy
pri

PCI-X

2 x FibreChannelj

Building A Bigger Server

A350

 Connect multiple bricks
with NUMALink-
up to 16 CPUs

\\\\\\\\\\\

INUMAIink

\\\\\\\\\\\\

®
INNOVATION

FOR RESULTS’

* Yeah, we all knew that

But really, on Altix it sucked sloooowly

2 x 1.4 GHz McKinley slower than

2 x 800 MHz MIPS

6 x ltanium -> 8 x ltanium

33% more power, 12% more NFS throughput
With fixed # clients, more CPUs was slower!
Simply did not scale; CPU limited

« My mission...
make the Linux NFS server suck faster on NUMA

Bandwidth Test

« Throughput for streaming read, TCP, rsize=32K

1000
o 800
0 .
=
= 6001
8_ ' Before
o 4
> 400
O
= 200-
0 . .
4 6 8

CPUs, NICs, clients

Better

Call Rate Test

« |OPS for in-memory rsync from simulated Linux 2.4

clients
40000-
(Dlz 30000_' Scheduler overload!
O - Clients cannot mount
O
-
> -
£ 20000-
10000+

0 10, 20 30 40 50 Sgl
virtual clients

FOR RESULTS’

Overview

* Introduction
* Principles of Operation

Principles of Operation

e portmap
maps RPC program # -> TCP port

NFS Client

NFS Server
Use
PMAP
ister
portmap
MOUNT rpc.mountd
NFS

Kernel
upcall

Principles of Operation

* rpc.mountd
« handles MOUNT call
* Interprets /etc/exports

NFS Client

PMAP

MOUNT

NFS

Principles of Operation

« kernel nfsd threads

* global pool

- little per-client state (< v4)

» threads handle calls g o PEECY
not clients | rpemountd

« “upcall’s to rpc.mountd

Kernel Data Structures

e Slruct svc _socket
« per UDP or TCP socket

Kernel Data Structures

* Struct svc_serv

« effectively global

« pending socket list

 available threads list

« permanent sockets list (UDP, TCP rendezvous)
» temporary sockets (TCP connection)

Kernel Data Structures

* Struct ip_map
* represents a client IP address
« sparse hashtable, populated on demand

Lifetime of an RPC service thread

* If no socket has pending data, block
— normal idle condition

Lifetime of an RPC service thread

* |f no socket has pending data, block
— normal idle condition

 Take a pending socket from the (global) list

Lifetime of an RPC service thread

* |f no socket has pending data, block
— normal idle condition

« Take a pending socket from the (global) list
» Read an RPC call from the socket

Lifetime of an RPC service thread

If no socket has pending data, block
— normal idle condition

Take a pending socket from the (global) list
Read an RPC call from the socket
Decode the call (protocol specific)

Lifetime of an RPC service thread

* |f no socket has pending data, block
— normal idle condition

« Take a pending socket from the (global) list
« Read an RPC call from the socket
» Decode the call (protocol specific)

 Dispatch the call (protocol specific)
— actual I/O to fs happens here

Lifetime of an RPC service thread

If no socket has pending data, block
— normal idle condition

« Take a pending socket from the (global) list
« Read an RPC call from the socket
» Decode the call (protocol specific)

 Dispatch the call (protocol specific)
— actual I/O to fs happens here

 Encode the reply (protocol specific)

Lifetime of an RPC service thread

If no socket has pending data, block
— normal idle condition

« Take a pending socket from the (global) list
« Read an RPC call from the socket
» Decode the call (protocol specific)

 Dispatch the call (protocol specific)
— actual I/O to fs happens here

« Encode the reply (protocol specific)
 Send the reply on the socket

Overview

Introduction
Principles of Operation
Performance Factors

Performance Goals: What is Scaling?

« Scale workload linearly

— from smallest model: 2 CPUs, 2 GigE NICs
— to largest model: 8 CPUs, 8 GigE NICs

Performance Goals: What is Scaling?

« Scale workload linearly
— from smallest model: 2 CPUs, 2 GigE NICs
— to largest model: 8 CPUs, 8 GigEk NICs

« Many clients: Handle 2000 distinct IP addresses

Performance Goals: What is Scaling?

« Scale workload linearly
— from smallest model: 2 CPUs, 2 GigE NICs
— to largest model: 8 CPUs, 8 GigE NICs

« Many clients: Handle 2000 distinct IP addresses
 Bandwidth: fill those pipes!

Performance Goals: What is Scaling?

Scale workload linearly
— from smallest model: 2 CPUs, 2 GigE NICs
— to largest model: 8 CPUs, 8 GigE NICs

Many clients: Handle 2000 distinct IP addresses
Bandwidth: fill those pipes!
Call rate: metadata-intensive workloads

Lock Contention & Hotspots

* spinlocks contended by multiple CPUs
 oprofile shows time spent in iab4_spinlock contention.

Lock Contention & Hotspots

« on NUMA, don't even need to contend

 cache coherency latency for unowned cachelines
« off-node latency much worse than local
 “cacheline ping-pong”

Lock Contention & Hotspots

o affects data structures as well as locks

 Kkernel profile shows time spent in un-obvious places in
functions

* |ots of cross-node traffic in hardware stats

Some Hotspots

* sv _lock spinlock in struct svc_serv
— qguards global list of pending sockets, list of pending threads

* split off the hot parts into multiple svc_pools

— one svc_pool per NUMA node
— sockets are attached to a pool for the lifetime of a call
— moved temp socket aging from main loop to a timer

®
INNOVATION

FOR RESULTS’

Some Hotspots

 struct nfsdstats
— global structure

* eliminated some of the less useful stats
— fewer writes to this structure

Some Hotspots

» readahead params cache hash lock

— global spinlock
— 1 lookup+insert, 1 modify per READ call

 split hash into 16 buckets, one lock per bucket

Some Hotspots

 duplicate reply cache hash lock
— global spinlock
— 1 lookup, 1 insert per non-idempotent call (e.g. WRITE)

* more hash splitting

Some Hotspots

* lock for struct ip_map cache
— YA global spinlock

« cached ip_map pointer in struct svc_sock -- for TCP

NUMA Factors: Problem

« Altix; presumably also Opteron, PPC

« CPU scheduler provides poor locality of reference
— cold CPU caches
— aggravates hotspots

* ideally, want replies sent from CPUs close to the NIC
— e.g. the CPU where the NIC's IRQs go

NUMA Factors: Solution

« make RPC threads node-specific using CPU mask

 only wake threads for packets arriving on local NICs

— assumes bound IRQ semantics
— and no irgbalanced or equivalent

NUMA Factors: Solution

* new file /proc/fs/nfsa/pool threads
— sysadmin may get/set number of threads per pool
— default round-robins threads around pools

®
INNOVATION

FOR RESULTS’

Mountstorm: Problem

* hundreds of clients try to mount in a few seconds
— e.g. Job start on compute cluster

« want parallelism, but Linux serialises mounts 3 ways

Mountstorm: Problem

* single threaded portmap

NFS Client

NFS

DNS
Server
NFS Server ’\
User
rpc.mountd

A

Kernel

®
INNOVATION

FOR RESULTS’

Mountstorm: Problem

DNS

* single threaded rpc.mountd
* blocking DNS reverse lookup e N

PMAP

« & blocking forward lookup > orman
— workaround by adding all | MOUNT
clients to local /etc/hosts e
» also responds to “upcall”

from kernel on 15' NFS call

®
INNOVATION

FOR RESULTS’

Mountstorm: Problem

* single-threaded lookup of ip_map hashtable

DNS
Server

NFS Server ’\

* in kernel, on 18 NFS call

User

from new address >

portmap

E register

 spinlock held while traversing

rpc.mountd

« Kkernel little-endian 64bit IP
address hashing balance bug

NFS

>

A

Kernel

upcall

— > 99% of ip_map hash entries on one bucket

®
INNOVATION

FOR RESULTS’

Mountstorm: Problem

« worst case: mounting takes so long that many clients
timeout and the job falils.

Mountstorm: Solution

« simple patch fixes hash problem (thanks, iozone)
« combined with hosts workaround:
can mount 2K clients

Mountstorm: Solution

« multi-threaded rpc.mountd
* surprisingly easy

« modern Linux rpc.mountd keeps state

— in files and locks access to them, or
— in kernel

* just fork() some more rpc.mountd processes!
 parallelises hosts lookup
« can mount 2K clients quickly

Duplicate reply cache: Problem

« sidebar: why have a repcache?

» see Olaf Kirch's OLS2006 paper

* non-idempotent (NI) calls

« call succeeds, reply sent, reply lost in network
« client retries, 2™ attempt fails: bad!

Duplicate reply cache: Problem

« repcache keeps copies of replies to NI calls

 every NI call must search before dispatch, insert after
dispatch
« e.g. WRITE

 not useful if lifetime of records < client retry time (typ.
1100 ms).

Duplicate reply cache: Problem

 current implementation has fixed size 1024 entries:
supports 930 calls/sec

« we want to scale to ~10”5 calls/sec

e SO0 size Is 2 orders of magnitude too small
« NFS/TCP rarely suffers from dups

* yet the lock is a global contention point

Duplicate reply cache: Solution

* modernise the repcache!
« automatic expansion of cache records under load

* triggered by largest age of a record falling below
threshold

Duplicate reply cache: Solution

 applied hash splitting to reduce contention
 tweaked hash algorithm to reduce contention

Duplicate reply cache: Solution

« Implemented hash resizing with lazy rehashing...
« for SGI NAS, not worth the complexity
« manual tuning of the hash size sufficient

CPU scheduler overload: Problem

 Denial of Service with high call load (e.g. rsync)

CPU scheduler overload: Problem

» knfsd wakes a thread for every call
- all 128 threads are runnable but only 4 have a CPU

 load average of ~120 eats the last few% in the
scheduler

 only kernel nfsd threads ever run

CPU scheduler overload: Problem

* user-space threads don't schedule for...minutes

 portmap, rpc.mountd do not accept() new connections
before client TCP timeout

 new clients cannot mount

CPU scheduler overload: Solution

* limit the # of nfsds woken but not yet on CPU

NFS over UDP: Problem

 bandwidth limited to ~145 MB/s no matter how many
CPUs or NICs are used

 unlike TCP, a single socket is used for all UDP traffic

NFS over UDP: Problem

» when replying, knfsd uses the socket as a queue for
building packets out of a header and some pages.

« while holding svc_socket->sk _sem
* so0 the UDP socket is a bottleneck

NFS over UDP: Solution

« multiple UDP sockets for receive
* 1 perNIC
« bound to the NIC (standard linux feature)
» allows multiple sockets to share the same port
* but device binding affects routing,
SO can't send on these sockets...

NFS over UDP: Solution

« multiple UDP sockets for send

* 1 per CPU

» socket chosen in NFS reply send path

« new UDP_SENDONLY socket option

* not entered in the UDP port hashtable, cannot receive

Write performance to XFS

 Logic bug in XFS writeback path
— On write congestion kupdated incorrectly blocks holding i_sem
— Locks out nfsd

« System can move bits
— from network
— or to disk
— but not both at the same time

« Halves NFS write performance

®
INNOVATION

FOR RESULTS’

Tunings

 maximum TCP socket buffer sizes

« affects negotiation of TCP window scaling at connect
time

« from then on, knfsd manages its own buffer sizes

 tune 'em up high.

Tunings

 tg3 interrupt coalescing parameters
« bump upwards to reduce softirq CPU usage in driver

Tunings

« VM writeback parameters

* bump down dirty_background _ratio,
dirty _writeback _centisecs

* try to get dirty pages flushed to disk before the
COMMIT call

« alleviate effect of COMMIT latency on write throughput

Tunings

e async export option

« only for the brave

« can improve write performance...or Kill it

 unsafe!! data not on stable storage but client thinks it is

Tunings

* no_subtree check export option

* NO security impact if you only export mountpoints
 can save nearly 10% CPU cost per-call

« technically more correct NFS fh semantics

Tunings

+ Linux' ARP response behaviour suboptimal

 with shared media, client traffic jumps around
randomly between links on ARP timeout

« common config when you have lots of NICs
« affects NUMA locality, reduces performance

* /proc/sys/net/ipv4/conf/$eth/arp_ignore
.../arp_announce

Tunings

 ARP cache size
o default size overflows with about 1024 clients
* /proc/sys/net/ipv4/neigh/default/gc_thresh3

Overview

 Introduction

* Principles of Operation
» Performance Factors
» Performance Results

Bandwidth Test

« Throughput for streaming read, TCP, rsize=32K
1000

800+ Better

Throughput, MiB/s

4 6 8 Sgl

CPUs, NICs, clients INovATION

Bandwidth Test: CPU Usage

* Y%sys+%intr CPU usage for streaming read, TCP,
rsize=32K

800
Better

o
-
o

400-

CPU usage %

200

’ 6 8 Sgl

CPUs, NICs, clients 777

Call Rate Test

« |OPS for in-memory rsync from simulated Linux 2.4
clients, 4 CPUs 4 NICs

rsync IOPS

90000

80000
70000-
60000
50000
40000-
30000-

20000
10000

After
Still going...got bored
» Overload
. Before
0 100 200 300

virtual clients

Better

Call Rate Test: CPU Usage

* %Ssys +%intr CPU usage for in-memory rsync from
simulated Linux 2.4 clients

400 - < Qverload
| fe?ore Better

0 100 200 300 Sgl

virtual clients 0w

Performance Results

* More than doubled SPECsfs result
« Made possible the 1st published Altix SPECsfs result

Performance Results

 July 2005: SLES9 SP2 test on customer site "W" with 200
clients: failure

Performance Results

« July 2005: SLES9 SP2 test on customer site "W" with
200 clients: failure

 May 2006: Enhanced NFS test on customer site "P" with 2000
clients: success

Performance Results

« July 2005: SLES9 SP2 test on customer site "W" with
200 clients: failure

« May 2006: Enhanced NFS test on customer site "P"
with 2000 clients: success

« Jan 2006: customer “W” again...fingers crossed!

Overview

 Introduction
* Principles of Operation
» Performance Factors
« Performance Results
* Future Work

Read-Ahead Params Cache

 cache of struct raparm so NFS files get server-side
readahead behaviour

* replace with an open file cache
— avoid fops->release on XFS truncating speculative allocation
— avoid fops->open on some filesystems

®
INNOVATION

FOR RESULTS’

Read-Ahead Params Cache

» need to make the cache larger

— we use it for writes as well as reads
— current sizing policy depends on #threads

* Issue of managing new dentry/vfsmount references
— removes all hope of being able to unmount an exported filesystem

®
INNOVATION

FOR RESULTS’

One-copy on NFS Write

« NFS writes now require two memcpy

— network sk_buff buffers -> nfsd buffer pages
— nfsd buffer pages -> VM page cache

* the 1° of these can be removed

®
INNOVATION

FOR RESULTS’

One-copy on NFS Write

 will remove need for most RPC thread buffering
— make nfsd memory requirements independent of number of threads

 will require networking support
— new APIs to extract data from sockets without copies

 will require rewrite of most of the server XDR code

 not a trivial undertaking

®
INNOVATION

FOR RESULTS’

Dynamic Thread Management

« number of nfsd threads is a crucial tuning

— Default (4) is almost always too small
— Large (128) is wasteful, and can be harmful

* existing advice for tuning is frequently wrong

* no metrics for correctly choosing a value
— existing stats hard to explain & understand, and wrong

®
INNOVATION

FOR RESULTS’

Dynamic Thread Management

* want automatic mechanism:

« control loop driven by load metrics
» sets # of threads

« NUMA aware

« manual limits on threads, rates of change

Multi-threaded Portmap

« portmap has read-mostly in-memory database

* not as trivial to MT as rpc.mountd was!

 will help with mountstorm, a little

 code collision with NFS/IPv6 renovation of portmap?

Acknowledgements

« this talk describes work performed at SGI Melbourne,
July 2005 — June 2006

— thanks for letting me do it
— ...and talk about it.
— thanks for all the cool toys.

Acknowledgements

« kernel & nfs-utils patches described are being
submitted

* thanks to code reviewers

— Neil Brown, Andrew Morton, Trond Myklebust, Chuck Lever,
Christoph Hellwig, J Bruce Fields and others.

®
INNOVATION

FOR RESULTS’

References

« SGI http.//www.sgi.comy/storage/.
 Olaf Kirch, “Why NFS Sucks”,

http://www.linuxsymposium.org/2006/linuxsymposium_procv2.pdf

¢ PCP http.//0ss.sgi.com/projects/pcp

° Oprofile http.//oprofile.sourceforge.net/

¢ fSX http.//www.freebsd.org/cqi/cvsweb.cgi/src/tools/regression/fsx/

« SPECsfs htto://www.spec.org/sfs97r1/

o fsstress http.//0ss.sgi.com/cgi-bin/cvsweb.cgi/xfs-cmds/xfstests/Ito/

e TBBT htto.//www.eecs.harvard.edu/sos/papers/P149-zhu.pdf

®
INNOVATION

FOR RESULTS’

Advertisement

« SGI Melbourne is hiring!
— Are you a Linux kernel engineer?
— Do you know filesystems or networks?
— Want to do QA in an exciting environment?
— Talk to me later

®
INNOVATION

FOR RESULTS’

Overview

 Introduction

* Principles of Operation
» Performance Factors
« Performance Results
* Future Work

« Questions?

