Programming the
Cell Processor

A simple raytracer from pseudo-code
to spu-code

Michael Ellerman

Linux on Cell/Power Kernel Team
IBM OzLabs
Australia Development Lab

“¢- Linux.conf.au
<. MELSOURNE

Overview

Cell Processor
Raytracing
Optimisation strategies
Bling

Summary

‘v Linux.conf.au
. MELSOURNE

The Cell Processor

‘v Linux.conf.au
<. MELSOURNE

The Cell Broadband
Engine® Processor

An implementation of the Cell
Broadband Engine® Architecture

Cell Broadband Engine is a trademark of Sony Computer Entertainment Inc.

“¢- Linux.conf.au
<\ MELZOURNE

Why is Cell
Interesting?

‘v Linux.conf.au
<. MELSOURNE

The good old days

CPU

‘v linux.conf.au
. MELSOURNE

Early 2000's

CPU

‘IHHIE%HHI ‘IiHIE%HHI

£1 linux.conf.au
. MELSOURNE

About now

CPU CPU

£1 linux.conf.au
. MELSOURNE

Soonish

CPU

||||||iii|||||||
||||||iiii||||||)

i] linux.conf.au
> MEL30OURNE

?

In your laptop

2015

=
(O
e
- AN
-
O
| .
xX O
=
-
-r—
—

—
LLJ
=2

__J:: "
o
. A

The Cell

“o+ linux.conf.au
> MELSOURNE

The Cell

“o+ linux.conf.au
> MELSOURNE

SPEs are more than CPUs

\/

DMA Engine

‘v linux.conf.au
. MELSOURNE

There will be no CPU

‘v Linux.conf.au
<. MELSOURNE

So what's it like
to program?

“¢- Linux.conf.au
<. MELSOURNE

A simple raytracer

‘v Linux.conf.au
<. MELSOURNE

Raytracing #1

Scene Object

‘o linux.conf.au

. MELSOURNE

Raytracing #2

Scene Object

‘o linux.conf.au

. MELSOURNE

Raytracing #3

‘o linux.conf.au
<. MELSOURNE

A raytracer in 7 lines

for each pixel:
hit = Nothing
for each object:
1f ray hits object:
1f object closer than hit:
hit = object

pixel = hit.colour

w—linux.conf.au

MELSOURNE

It's not quite that simple

pixel = hit.colour

Actually more like this:

pixel = lighting function(hit)

“¢- Linux.conf.au
. MELSOURNE

A raytracer on Cell

e [t's a new Instruction set
e C, C++, Fortran, Ada?
e C - close to the metal

e | don't know Fortran

‘v Linux.conf.au
<. MELSOURNE

Python prototype first

* Get the algorithms right first
e Python ~= pseudo code

e Library routines for vectors

“¢- Linux.conf.au
<. MELSOURNE

3 mins 48 s @ 400x400

£1 linux.conf.au
. MELSOURNE

How to parallelise on Cell?

*6 SPUs on PS3

16 SPUs on IBM QS2x Blades

e One SPU thread per pixel?

e Split hit detection and lighting?

e Each SPU renders 1/nth of the rows?

“¢- Linux.conf.au
<. MELSOURNE

Thread creation
and switch is costly,
synchronisation

Is hard

“o- Linux.conf.au
. MELSOURNE

How to parallelise on Cell?

By rows: each SPU renders 1/n rows

e For large scenes rectangles would be
better - object locality

* Adaptive partitioning

 Open question IMHO

“¢- Linux.conf.au
. MELSOURNE

PPE Structure

Lload scene()

for @ to num spus:
threads[1] = spawn spu thread(1)

for @ to num spus:
walt for(threads[1i])

save 1mage()

“¢- Linux.conf.au
. MELSOURNE

SPU Structure

dma scene data from ppe()
raytrace scene()

dma 1image to ppe()

“¢- Linux.conf.au
<. MELSOURNE

This will appear
to work, but ..

“¢- Linux.conf.au
<. MELSOURNE

Let's do some math

e 854 x 480 = 409,920 pixels

* 409,920 x 3 (RGB) ~= 1.2 MB
1.2 MB + 6 (SPUs) ~= 200 KB
 SPU program is ~70 KB

* How big was local store again?

“¢- Linux.conf.au
<\ MELZOURNE

SPU Structure

dma scene data from ppe()
for each row:
raytrace row()

dma row image to ppe()

“¢- Linux.conf.au
<. MELSOURNE

Meet the MFC

e MFC: Memory Flow Controller
* DMA engine in each SPE
e Up to 16 DMASs In flight

e Scatter/Gather support

“¢- Linux.conf.au
<. MELSOURNE

Power at a cost

e DMA sizes 1, 2, 4, 8, 16 bytes or a
multiple of 16 bytes upto 16KB

 Must be naturally aligned
128 bytes is optimal (cache line)

e Quadword offsets must match

“¢- Linux.conf.au
<. MELSOURNE

Quadword offsets?

Quad offset 0 1 2 3
Address 0x0 0x20 0x40 0x60
Source | —

Destination | I I

£1 linux.conf.au
. MELSOURNE

Quadword offsets?

Source | I
Shift left <:|
Temporary | I |
Destination | .

i] linux.conf.au
> MEL30OURNE

The dreaded "Bus Error"

 Received when DMA goes wrong

e Todo: better error reporting

6 SPUs, 80 rows each, 0x320A0 pixels
8 SPUs, 60 rows each, 0x25878 pixels

“¢- Linux.conf.au
<. MELSOURNE

Bad design decision #1

struct pixel {
char r, g, b;

}i

e 3 bytes!
e Saves alpha byte we don't use

e 1/4 less memory use is good right?

“¢- Linux.conf.au
. MELSOURNE

Alignment matters

* 3 byte pixels give weird quadword
offsets

e Shift every quadword before DMA'Ing

e Shift every quadword as we store pixels

“¢- Linux.conf.au
<. MELSOURNE

But it's 25% more
DMA traffic?

« 1080p, 1920 x 1080 = 2,073,600 pixels
3 Bpp = 6,220,800 B = 0.00006s
4 Bpp = 8,294,400 B = 0.0008s

e Can DMA 1,250 frames/second

“¢- Linux.conf.au
. MELSOURNE

Alighnment & size

e Data structures need to be aligned

* And an appropriate size

struct thingo {
int a, b, c; /* 32-b1it */
uint 32t pad;

i

“¢- Linux.conf.au
<. MELSOURNE

Raytracer core is
all 3D vector math

| won't bore you with the details

“¢- Linux.conf.au
<. MELSOURNE

Vector Registers

e 128-bit wide registers

e 4 floats (single precision)

e 2 doubles (double precision)
* 4 ints/unsigned Iints

e 16 chars (bytes)

“¢- Linux.conf.au
<. MELSOURNE

SIMD 101

$1 (128 bits) ‘ 10

40 100 0
T @ B B @
- s 105 >

$2 (128 bits)

“o+ linux.conf.au
> MELSOURNE

Vector Registers

e Each SPU has 128 128-bit reqisters
e 512 floats In flight (in theory)
e Compiler will use them, it has to

 Can help the compiler out though

“¢- Linux.conf.au
<. MELSOURNE

Vectorising

struct vector {
Xy, Y, £, W,
} vec;

Replace with:

vec floatd vec;

“¢- Linux.conf.au
. MELSOURNE

A little more
raytracing theory

Ray / object intersections

“¢- Linux.conf.au
. MELSOURNE

struct primitive {
int type;
union A
struct plane plane;
struct sphere sphere;
} data;

- Linux.conf.au
<. MELSOURNE

OOPs!

float primitive intersect(struct primitive *p,
struct ray *ray)

{
switch (p->type) {
case PLANE:
return plane intersect(p, ray);
case SPHERE:
return sphere intersect(p, ray);
}
}

“¢- Linux.conf.au
. MELSOURNE

Branches

 SPUs have no branch prediction
 Missed branches cost 18-19 cycles
e Can't statically predict this branch

e ~50% of the time we'll take the wrong
path

“¢- Linux.conf.au
<. MELSOURNE

No Branches

 Move the test up
e Loop through all spheres, then all planes

e Inside the loop we know what we're
dealing with

“¢- Linux.conf.au
<. MELSOURNE

SPU timing tool

e Part of IBM SDK
e Estimate of execution pattern

e Dual iIssues

e Stalls

‘v Linux.conf.au
<. MELSOURNE

000265
000271
000272
000278
000284

000205
000205
000206
000206
000207
000207

MEL

SPU timing tool output

0

oNOoONONO)

OD
1D
OD
1D
OD
1D

- linux.conf.au
OURNE

567890

567890
567890
6738901

6789

123456
234567

789012

7890

890123

456789

m
m
fnms

fma
fs

fs
lqd
m
shufb
fs
shufb

$80,$4,$79
$81,$80, $2
$5,%$4,$80,%$24
$78,$5,$81,$80
$75,$77,$78

$19, $68, $19
$34,48(%$30)
$36, %5, $5
$39,%$13,$49, $63
$58,$68, $10
$15,$15,$48, $63

Unroll your loops

 Reduces loop management overhead
e More code in the loop body
 Compiler has more chance to schedule

* Not pretty code

“¢- Linux.conf.au
<. MELSOURNE

AOS vs SOA

e Array of Structures

e Structure of arrays

 Column vs row vectors

* AOS is intutive, SOA is faster

e Can convert between quite quickly

“¢- Linux.conf.au
<. MELSOURNE

This slide accidentally left blank

£1 linux.conf.au
. MELSOURNE

02:01
Before vec_float
Convert to ve float 480x854 1 SPU, 305 spheres
01:44
Lights don't shadow each other
Store spheres separately

_ 01:26
S
&
o Unroll shadow loop
E 01:09
5
£
E
m "
E 00:52 7 Don't use switch in primtive_intersect()
% Unroll sphere_intersect()
&

00:35

Branchless sphere_intersect()
00:17 +
00:00 T T T .

10
Successive versions

“ linux.conf.au
{ MELSOURNE

Bling

292 spheres at 854x480 on
6 SPEs in ~0.65s per frame

‘v Linux.conf.au
. MELSOURNE

w

L]
T,
"
o
L
L
&=
=
=
-
-
-
-
-
-
-
-

linux.conf.au
MELSOURNE

Random thoughts

e Code quality vs speed
* Single source base?
e Compilers could get better

* Real iIssues with debugging optimised
code

“¢- Linux.conf.au
<. MELSOURNE

A complex raytracer?

e Space partitioning approach

e Scenes larger than Local Store

* Object caching, DMA prefetching
e More complex lighting

 Dynamic code loading

“¢- Linux.conf.au
<. MELSOURNE

IBM IRT

e ~300,000 polygon models in real time
* Runs on PS3 and QS52x blades

e Linear scaling across multiple machines
e Several man years of effort

e Awesome

“¢- Linux.conf.au
<. MELSOURNE

—~ linux.conf.au
<. MELSOURNE

Props to ..

e Jk for his SVGs
 Everyone at OzlLabs
e The Boblingen crowd

* Meg

‘v Linux.conf.au
<. MELSOURNE

Links

o |[BMIRT: http://www.alphaworks.ibm.com/tech/irt
e |BM Cell SDK: http://www.ibm.com/developerworks/power/cell/

e My Blog: http://michael.ellerman.id.au/blog

‘v Linux.conf.au
<. MELSOURNE

Legal
e | his work represents the view of the authors and does not necessarily represent
the view of IBM.
e LiNux is a registered trademark of Linus Torvalds.
e Cell Broadband Engine is a trademark of Sony Computer Entertainment Inc.
e PLAYSTATION is a trademark of Sony Computer Entertainment Inc.

e Other company, product, and service names may be trademarks or service marks
of others.

‘v Linux.conf.au
<. MELSOURNE

Questions?

‘v linux.conf.au
. MELSOURNE

