
Memtest: Finding holes in the VM system

WIP

Juan Quintela
Department of Computer Science

Universidade da Coruña
quintela@dc.fi.udc.es

January 11, 2001

Abstract

This paper describes the development of a test suite for the VM sub-
system and several of the resulting programs in detail. A proposal for
dealing with the shown bottlenecks are made. This suite of programs is
called memtest. The suite is composed of several programs that generate
different kind of IO and memory loads, such as writing big files (mmap*),
using a lot of shared memory (ipc*), programs that do a lot of memory
allocations/frees. This test suite is not used for benchmarking, it is used
to find bottlenecks.

In the presentation we discuss the goals of several tests. The part of
the kernel they affect and what are the good ways to handle them.

The tests that form the suite has been contributed by several people.
The suite intend to be a place to put tests when anybody find a bottleneck
and write a program to show it, then it is easy to make sure that future
versions don’t have that problem.

1 Introduction

This paper describes the development of a test suite for the VM subsystem.
This test suite was used to let people get for a single place programs for testing
the system for errors, and a place where you can put code that found bugs in
previous implementations and then see that we don’t have the same problem
again.

In the section 2 is described the born of the memtest suite. In the next
sections, I describe several of the tests, what they do and what problems they
find, and what was the solution used to solve them.

1

2 Previous life

In the beginning, the author was an happy PhD. student that was working in his
PhD. thesis. The programs related with his thesis stressed a lot the VM layer
and made my linux machine die hard (die in the sense of Oops). He used the
standard procedure in this cases: He wrote a nice Bug report to the Linux kernel
mailing list waiting for the nice kernel hackers to fix his problem. That was in
the 2.2 kernel era. But nothing happened. He continued working in his thesis,
thinking that the problems will be solved in 2.4 with the new memory layer/page
cache Each time that Linus get out a new kernel version, he tested the new
kernel version, it normally solved some problems and other appeared At
the end (end???) of the 2.3 era (i.e. 2.3.99-preX), he found that his problems
has not solved yet. Then he thought that it would be a good idea to try to
help the kernel hackers to fix the problem. At the same time, it happened
that Rik van Riel came to my University to give a couple of conferences. He
was the right person to show the problems that he was having. He show him
the problems, and he asked for a small program which reproduced the hangs.
Memtest was born. After I have some programs written, I got other people who
asked me to get more programs inside the suite.

3 The tests

One important thing about almost all the tests in memtest is that they are
test to check that the VM layer behaves well, they are not benchmarks in the
speed/space sense. It is good that this programs run well, but the important
thing is that they should not run too bad. In the future, I will try to also add
some speed tests to it, or at least to give some pointers to other benchmarks
and the way to use them for searching for several bottlenecks.

4 mmap001 tests

The mmap tests are examples based in the works that I was doing in my PhD.
mmap001 is a test that creates a file the size of the physical memory of the
machine and then writes it sequentially. In the 2.3.99-preX kernel series, a
machine with 128MB of RAM will stall during as much time as 30 seconds
because in the kernel, it waited for starting writing something to disk until
there was no more free space. At that point the kernel started to write asyn-
chronously the dirty pages, but all the pages was dirty. Then it started to write
asynchronously the whole memory of the machine and that took a lot of time
to succeed. This test is one of the clearest examples that memtest is not a
benchmark. This test is supposed that for the system, it should be the same
mmap a big file and write to it sequentially than do normal writes to the same
size file. This test is not needed to run very fast, but a normal user will not
expect the whole system to stall for minutes. Once that the biggest stalls have

2

been solved there was still problems that the kernel got loads around 15 while
running this test, what is also not expected in a normal system.

5 mmap002

This test is a continuation of the previous test. It mmap a file twice the size of
the memory, then it writes sequentially the first half of the file. Then it opens
an anonymous mapping and copies all the info from the file to the anonymous
mapping. After that it copies again the shared mapping to the other half of the
file. This test showed that the kernel at that moment begins to swap when it
was too late. It waited for doing any swap, writing to disk, etc until there was
no more clean pages, at that point, all the system was doing really bad (read
trashing). The problem here, is that the system tried too hard caching pages
(and specially dirty pages). Other problem was that all the process were having
problems for doing allocations, when there was only a memory hog, and it was
supposedly easy to detect it. Well, at the end it showed that it was not so easy
to detect the memory hog, when there was only one, and the problem become
really nasty when we had several memory hogs.

This is another test, where all the heuristics of the kernel made it to work
worst (i.e. we never reused a single page of the file, and we walk sequentially
files bigger than physical memory. That made that a system that don’t do any
cache will be faster running that test. But for normal use, we prefer a system
that do caching. The problem here is that we want to detect when we are
accessing a file only sequentially and then not doing so much caching. One user
could not wait a full speed write with mmap002, but he will also not wait that
the system enter trashing when there is only a process that is doing linear copies
of files.

6 ipc001

This test was created by Christoph Roland to test System V shared memory. It
creates several shared memory segments and try to test that all the operations
in the system (writes, attach, dettach, ...).

7 Future Work

There are several things that I have planned to do to make the memtest suite
more useful:

• Put more documentation for the suite, to make easy for other people to
use it and more importantly, to understand the results, while they are
wrong or correct.

• Get more tests for the suite. Folks, I am accepting submissions of what
are the tests/scripts/knowledge that you use for testing the system.

3

• Write more documentation.

• Make the tests more modular. The idea is to be able to get an easy way to
simulate real loads. I want to make easy to define in an easy way tests like
misc001, where there are one process making malloc()/free() for 1/3 of
the memory, uses mmap() for other third of the memory and fwrite() for
other file. That would be easy if the test where very simple, getting their
parameters from the command line.

• Have I told about having documentation to let other people doing the
previous kind of thing.

• Include benchmarks (or pointers to it) and document the way to use them
for measuring specific things. Just now everybody is using some bench-
marks for doing that, but each people use their small subset and there is
no way to know what benchmark is used for measuring what, and what
is the correct way to configure the benchmarks. One example in this re-
gard is comment things like people use normally dbench 48 to measure
the performance of the file system and the page cache. An idea of what
means the parameter, what you should expect and the causes of previous
pitfalls will be very useful.

• Considering the possible integration of memtest with LTP: Linux Test
project (http://oss.sgi.com/projects/ltp/). Their is a bigger and
more ambitious project, but there is a bit more difficult to write a test for
doing that. I am thinking about integrating both efforts (i.e. let them to
do all the difficult work), or at least making an easy way to share code.

• Create a way to run the tests non-interactively. By non interactively I
mean that it should be possible to detect if the system is responsible or
not under high load created by the tests. Just now, you have to guess if
the system is more/less responsive with a change, and there is not a way
to run all the tests at night and know at the following morning if some of
the tests made the interactive response bad. Playing music and hearing
the pikes don’t work when you are out of the office. There is one program
that does something similar for the low-latency tests, I could use if for a
start.

8 Acknowledgements

I want to thank several people and institutions for the help that they have giving
me for doing memtest:

• Rik van Riel: He explained me a lot of things and helped me a lot to
begin working in the Linux Kernel.

4

• #kernelnewbies at irc.openprejects.net: There is a lot of cool people
connected there that helped me a lot with discussions and explanations
about all the questions that I have about The Linux Kernel.

• All the people that contributed code and ideas to the suite.

• Conectiva and the Universidade da Coruña for funding an SMP test
machine that helped me to find holes, test bugs and develop the suite
(Like in the real life, almost all the bugs shows up really faster when you
are working with SMP).

5

