Centralised Authentication using OpenLDAP

Del Elson
Babel Com Australia
http://www.babel.com.au/

Centralised Authentication using
OpenLDAP

linux.conf.au 2002

Centralised Authentication using OpenLDAP

Table of Contents

AUTHENTICATION ON LINUX USING OPENLDARP......coo e ercercceee s e see e sse e e e s s e se s 3
0 L 0T LD 1) o VR 4
AN U0 =5 010 Tc= 10 1) 0 T2 D U B &2 4
User Identification and NSS.......oo e iirir v st st s s s e e sa e s s e e eaesseeae s saenae e neensn 5
Issues in NetwoOrk AUthentiCatiON....cocuiiiii it e s e s s e s e sne e neeenenan 6
5 N 8
R0 0T L 0 0 1 £ 8
R o DT I L 9
Authentication and File SHariN@.......ccccoevoreiriine s crree e e st s s e e e se s se e s e s ee e se s seeeenes 10
Setting UP OPEINLIDAP......oo ettt re s e se s e s s r s ase e se e s e nse s sasenasenasensennsenanenan 12
Installing the OPENLIDAP SEIVET.....cucioiiceccireieeeercee s rree s st s sre et eeee e sree e s seaneesse e e e e nsenes 12
Installing an OPENLDAP CHENT.......cccci ettt eee e et e e e e e st e e e e e ae e e e aeaeneas 13
Configuring OPENLIADP.......o et s s e et re e s e s e s s e e e e se e e e e naeeeesneeaeeneeeenn 14
RUNNING OPEINLIDAP.....co ettt ettt e s s s e e s e s e e s e e e s e e e s e s e e e e ananas 15
Migrating to OPENLIDAP........o et r e e e e e e eae e s e e s s e e s s e e es e aeesnee s saneesneesnnnnennan 16
38 3 Lol 1B 7N ST) o 1 PSS 17
LooKing INSide OPENLIDAP......ccc e cerrte st rer et rree e e st ese e e s s se s e e e e saesae s saeeaeenaesaeeeaenannnsenes 18
Setting UP LDAP QUETIES....ovcuirieeirieirieenseeriereesrsse st s sse s s s se s s e s e s se s s e e e e sn e e asseasssnassnsssnas 18
Setting up PAM and NSS for LDAP using authconfig.......ccccevevvrvrreesescn v v 19
Command Line LDAP TOOIS...cccuoiiirircceretestieseciessersee e eeseese s e sesss e sssesae e sresess enssessesssesnesasessansess 20
L]0 a7 N I AN e 7o) S 21
DN el <) 0 SRS 22
R0 0 LECIR Y100 @17 o 0 I B YN S 1<) o 23
AAVANCEA TOPICS. .irtretireierei et e st et e ee st re e s seesete s e e e e et e ssenseeasesaeeaeeseeseeanesaenannsneeesn 24
Red Hat Kickstart and OPenLDAP.........o e ercercee e s e st sseessee e se s ress e s e s s na e e e e 24
Making OPenLDAP INOTE SECUTE........ccceuereerecerreeeseeeeeeerseersessseessesssesessssesessasessesssesssesssssssssesssesses 25
Compiling OpenLDAP With OPenSSL...... et r st r e e e ee e s 26
Generating SSL keys fOr OPenLDARP........o v cerree e st s e e se e e e ee s 27
Configuring OpenLDAP tO US€ SSL KEYS....ouvirvriierece s cersers e s s e e e e e e 28
Testing OPenLDAP @Nd SSL.....e et rt et s et s e n e ae e e e e nae e sae e e 29
Setting UP an LDAP FePLICA. ...cciiorerecerrerie e recrtreesste s s s e e s se e e e see e e e e ss e e enae e nsesae s saenae e eensnnn 30
L3 o T =) = Tt 31
NTel o Te) 1 F= T S S 1 1) o) o 1SS 32
(000D EF: 1w (030 b= 1 BIAN L D 0|0 =) -3 33
Extending the SCREMIA.........cvvireeecec e re e st r et e e e e a e s e e e e e ae e s ae e e e e e e 34
Including your SChema eXtENSIONS. ...cuciviuirireeeecerreererrerree e s s et e e sr e e e e e s s e e e se s e s e e e enes 35
Issues With OPENLIDAP........ooo st e e e s e e s e s e e e e s e sesae e e e eae e e esesaeeeaenae e sennsenns 36

Centralised Authentication using OpenLDAP

AUTHENTICATION ON LINUX USING OPENLDAP

Introduction

Topics

This article covers a number of issues with LDAP authentication on
Linux. In this article, I have focussed on Red Hat Linux version 7.1
and later (with some comments about earlier revisions), however
many of the same principles apply to Debian and other Linux
distributions.

The topics that I will cover here include:

Introduction to Authentication systems
Introduction to LDAP

Installing an OpenLDAP server

Setting up an OpenLDAP client
Configuring OpenLDAP

Migrating to LDAP

LDAP tools

Securing OpenLDAP

Centralised Authentication using OpenLDAP

Introduction

Authentication and PAM

Authentication

Authentication
Protocols

PAM

Authentication is the process whereby a user logging on to a Linux
system has their credentials checked before being allowed access.
Usually, this means that a user needs to provide a login name, and a
password.

Many different programs provide authentication in different ways.
For example, the basic UNIX | ogi n program provides a simple text
interface for a user to enter a user ID and password. Graphical login
systems such as XDM (or gdm or kdm) provide a different interface.
Programs such as ssh can authenticate users based on things like
RSA or DSA keys, as well as passwords.

There are many different authentication suites or protocols available
on Linux today. Like all traditional UNIX systems, Linux is capable of
authenticating users against entries in the / et ¢/ passwd and

/ et ¢/ shadow files, but it also supports such authentication schemes
as Kerberos, RADIUS, and LDAP.

PAM is a set of libraries provided with most modern Linux
distributions, and it is installed by default in Red Hat Linux. The
PAM libraries provide a consistent interface to an authentication
protocol. An application can use the PAM libraries to allow the use of
any authentication protocol within that application, so that if the
system administrator wants to change from, for example,
/etc/passwd authentication to LDAP, the application does not have
to be re-written or recompiled.

PAM requires a PAM module for each authentication system. There
are many such PAM modules on the above web site.

Centralised Authentication using OpenLDAP

User Identification and NSS

Limitations of PAM

NSS

NSS and
authentication
protocols

Unfortunately, PAM only provides part of the information needed to
keep track of users on a Linux system. In addition to being able to
check that a user has entered the correct password, a Linux system
needs other information such as the user's numeric user ID, their
home directory, default shell, etc. This information, which would
normally be stored in the /etc/passwd file, can be determined
through a system interface known as NSS.

Amongst other things, the NSS system provides a richer set of
information about each user than just a login name and password.
Traditionally, this was done by using files (e.g., "~ /etc/passwd’), but
other name services (like the Network Information Service (NIS)
became popular for providing this information. These were usually
hacked into the standard C library.

Later Linux libraries contain a cleaner solution to this problem by
using dynamic libraries. This is designed after a method used by
Sun Microsystems. Linux follows the Solaris naming convention and
calls this service "Name Service Switch" (NSS).

Note that NSS is capable of providing information on other
"databases” other than the user and group databases. This includes
things like the /etc/hosts file, the /etc/services and /etc/protocol
files (listing TCP/IP parameters and name mappings), etc. For the
purposes of this tutorial we shall be covering all of these only briefly.
For more information see the /etc/nsswitch.conf file on your system.

Only some authentication schemes provide enough information to
be useful to NSS. For example, Kerberos only stores user
authentication information, not details such as a home directory or
default shell. Therefore, there is no NSS module for Kerberos.

Other authentication schemes that do not provide information to
NSS include most of the one-time password systems such as S/KEY
and SecurelD.

Centralised Authentication using OpenLDAP

Issues in Network Authentication

Storage of passwords Obviously, one of the big issues in network based authentication

Storing encrypted
passwords

Passing passwords

systems is solving the problem of how the passwords get stored,
accessed, and passed across the network.

There are two basic options:
+ Store the passwords in plain text on the server.

« Store encrypted passwords on the server.

Obviously, of the above methods, storing passwords in some
encrypted form on the server would seem to be a better option.
There is more to this than meets the eye, however. If passwords are
going to be stored in some encrypted manner, then they can either
be stored using a as a one-way encryption scheme such as a hash
method, or using a two-way encryption scheme such as a block
cipher.

If a two way encryption scheme is used, then a theoretical cracker
needs only to break into the server, recover the encryption key, and
decrypt the passwords. This means that password storage is no
more secure than if passwords were stored unencrypted.

If a one way encryption scheme is used, then we need to solve the
problem of passing passwords across the network.

Assume a one-way encryption method (e.g.: a hash) is used to
encrypt the users’ passwords. The server that is authenticating the
users needs to be able to regenerate the one-way hash somehow
after receiving the authentication request. This means that it needs
the original, unencrypted password sent to it, because this is the
only way to regenerate the hash and compare it to the stored hash.
So, our basic problem is that if one way encrypted passwords are
stored, we need to pass those passwords across the network in clear
text. Unless your network is very secure, this is a bad idea.

Centralised Authentication using OpenLDAP

Attempted (and
failed) solutions

SSL

Performance Issues

There are two basic solutions to the above problem:

1. Pass the hash across the network instead of the unencrypted
password (i.e. Perform the hash on the client).

2. Use some kind of challenge - response method based on the hash
of the password. This also requires doing the hash on the client.

Obviously, method 1 means that the client need only know the hash
of the password, rather than the password itself, in order to fake a
login. This means we have essentially reduced ourselves to storing
unencrypted passwords, because the hashed password is useful as a
"plain text" login. This is essentially what NIS does (although
somewhat differently as it passes the hash from server to client).

Method 2 is no better. Because the client is trusted to use the hash
of the password rather than the clear text form of the password in
generating its half of the challenge/response protocol, the hashed
password is essentially as useful (to a maliciously written client
program) as the plain text password used to create the hash. So we
are again essentially storing plain text passwords on the server. This
is what Microsoft does in its NTLM authentication system.

The only real solution to the above is to allow that plain text versions
of the password will be passed across the network, and secure the
network somehow. A good method of securing an arbitrary TCP
based network protocol (such as one might use in authentication) is
SSL, or TLS as it has now become.

SSL basically creates an encrypted "channel” between client and
server, and we can now use this channel to pass the clear text
password between the client and server. This means we have the
security of encrypted password storage combined with the security
of no plain text passwords being visible on the network.

Obviously, in a system that only has a few hundred users,
performance of the authentication system is rarely an issue. Where a
centralised authentication system is being used on a network with
thousands, tens of thousands, or even millions of users, the speed at
which an authentication attempt can be done can become an issue.

LDAP servers, because they are reasonably light-weight in
comparison to databases, and also because they tend to be highly
optimised for read access (which is what is required for an
authentication attempt), can provide good performance in these
situations. Certainly better performance than NIS, or flat text files.

Centralised Authentication using OpenLDAP

What is LDAP?

LDAP

LDAP Server

What can be stored in
an LDAP server?

Object Oriented
Terminology

LDAP

LDAP (an acronym for Lightweight Directory Access Protocol) is a
network protocol used for accessing information in an object
oriented database. LDAP includes features that make it useful to
both PAM and NSS, in that it can authenticate users, as well as
provide user information such as home directory names and default
shells, to NSS.

Note that LDAP does not define a storage method, it simply defines
the protocol used to access the data!

An LDAP Server or Directory Server (sometimes called a DS for short)
is a server that can send and receive information in the LDAP
protocol. Typically, an LDAP server will be a piece of software that
listens on the standard LDAP ports (389 and sometimes 636) for
connections, and responds to LDAP queries and requests. To draw an
analogy with databases, LDAP is the equivalent of SQL, and an LDAP
server is like a database server such as Oracle or MySQL.

LDAP servers are particularly useful for storing information about
people. This is because of the object oriented nature of LDAP. Unlike
a relational database, an object in an LDAP directory can contain an
arbitrary number of attributes, and each attribute can have an
arbitrary number of values. This is useful for many reasons. For
example, a database row containing a column for a phone number
would allow a single entry in that phone number column for each
row in the database table. A person, however, may have more than
one phone number, and so LDAP allows multiple phone numbers to
be stored in the same person object.

Note the slightly different terminology here: We say an LDAP
directory as opposed to a database, we call entries in the directory
objects instead of rows and we call field values of an object
attributes instead of columns.

Centralised Authentication using OpenLDAP

Why use LDAP?

LDAP as a storage
mechanism

How is LDAP
different to a
database?

There are a number of reasons why we might use LDAP:

LDAP allows us to centralise the information about users,
passwords, home directories, etc, in a single place on a network. If
we were using /etc/passwd files, for example, we would have to
make sure that all passwd files were kept in sync across the
network, which would be an absolute nightmare on a large
network with users changing passwords regularly.

LDAP offers encrypted transactions. Most LDAP servers offer
encrypted connections using SSL (either using Start TLS on port
389 or LDAPS on port 636), which is more secure than some
mechanisms whereby plain text passwords are sent over the
network.

An LDAP directory is useful for other purposes. For example, it
can quickly and easily be used as a company's staff e-mail and
contacts directory.

It is possible to use LDAP in a tree structured manner, unlike the
/etc/passwd or NIS tables which basically store users in a flat
structure. With a large number of users it makes sense to divide
them into organisational units so that they can be found and
managed more easily. In the long term, this makes managing an
LDAP directory less onerous than managing /etc/passwd files or
an NIS/NIS+ database.

An LDAP server is essentially an object oriented database that has
been designed different objectives:

Because of its object oriented nature, LDAP can store many
different types of data in a single "table". This is good for storing
system information (as would be required by any NSS backend),
because the types of information I need to store about a user
might be different to the types of information I need to store
about a network service. With a database, storing different types
of information would require multiple tables.

Because LDAP is used for storing data that is mostly static, it can
be heavily optimised for read access. The design goals of a
database are such that a large amount of read/write access
occurs, and so databases are usually designed to have good read
and write performance. In the design of an LDAP data store, read
performance can happily be optimised at the expense of write
performance. This usually means that read access to an LDAP
server is faster than read access to an RDBMS, although write
access will be faster in an RDBMS.

Centralised Authentication using OpenLDAP

Authentication and File Sharing

Limitations of any

One of the reasons we may want to authenticate users around a

authentication systemnetwork in a central manner is to allow them access to a central file

in an NFS
environment

Unix user to ID
mapping

Alternatives -- CIFS?

store, such as an NFS server.

Solving the authentication problem does not solve any of the issues
in NFS security, however.

The basic function of UNIX authentication systems are to map a user
name (e.g.: "del”) to a user number, or numerical user ID, such as
"501".

Once this user ID is obtained, the NES system "trusts” this user. NFS
contains no authentication protocol as part of it (although NIS and
LDAP are commonly used authentication protocols in an NFS
environment).

One issue with this is that if I trust an entire network to make NFS
mounts from an NFS server, then a malicious person can plug a
machine that they have set up themselves into the network, give
themselves a user ID that matches one on my file server, and access
files as if they were the user that owned that user ID.

LDAP provides an authentication method which I can use to map
user names to numbers on a network, but NFS does not mandate the
use of LDAP before making an NFS connection or reading a file on an
NFS mount.

CIES (or SMB) is Microsoft's file sharing protocol, and it has its own
authentication system (NTLM) that is mandated as part of making a
CIES connection to a server.

This means that no matter what client I plug into a CIFS network, I
must authenticate to the server before I can access files.

There are several problems with this:

+ NTLM, as an authentication protocol, basically sucks. Essentially
its challenge/response system based on MD2 hashes reduces the
server's password store to one that holds plain text passwords. A
cracker that breaks an NT server can obtain the MD2 hash of
every user's password, and therefore impersonate any user on the
network at any point in time.

« CIFS, as a file sharing protocol, also sucks. I'm not going to go
into a detailed explanation of the many reasons for this (ask
Andrew Tridgell for that if you have a day or so to spare), but my
unfavouritest point about it is that it is TCP socket based, unlike
NES which is UDP based. This means that (for example) SAMBA
has to spawn a new process and/or create a new TCP socket end-
point to handle every connection. On a large network this
becomes impractical.

10

Centralised Authentication using OpenLDAP

AFS?

A good solution?

AFS is a distributed file sharing protocol, which has Kerberos as an
authentication method within it.

I don't like this very much either, because I don't like Kerberos. It's
reasonably secure as a network authentication protocol goes, but the
Kerberos server essentially stores a token that is useful as a plain
text password for each user, much in the same way that NT does.

There aren't any.

What I'd like is a light-weight, distributed, encrypted, secure, file
sharing protocol, that incorporated LDAP as an authentication and
user information back end scheme. It would be UDP based (except
for the LDAP parts of course which are TCP), incorporate flexible and
opportunistic encryption methods (preferably including Rijndael /
AES), portable (with clients available for at least Windows NT, 2000,
95, 98, DOS, and UNIX), and of course it would be open source.

Are there a couple of hundred C programmers in the audience that
might be prepared to donate me a year or so of their time?

11

Centralised Authentication using OpenLDAP

Setting Up OpenLDAP

Installing the OpenLDAP Server

OpenLDAP

Client or Server
installation?

Installing the

Openl DAP is an open source implementation of an LDAP directory
server. OpenlLDAP is installed by default with Red Hat 7.1 or later,
and is available on Red Hat versions from 6.2 onwards.

Note that earlier releases of Red Hat used release 1 of the OpenLDAP
product. Although this is still considered a stable release of
OpenlLDAP by the OpenlDAP team, I would advise against using it
for a number of security reasons (it does not support SSL or schema
checking). Your OpenLDAP version should be 2.0.7-3 or later.

Note that OpenLDAP, like most network services, comes in two parts,
a client and a server. You usually only need one LDAP server on
your network, however a second can be helpful. You will need to
install the LDAP client libraries on every machine on your network.

Note that every LDAP server will usually also need to be an LDAP
client.

As usual, you can install OpenLDAP from the source code by

OpenLDAP Client and obtaining the source files from the OpenLDAP web site

Server RPMS

(http://www.openldap.org/) and following the compilation
instructions.

My preference, however, is to install the OpenLDAP packages from
the RPM files as follows. Note that you will need to install both the
server and client packages if you want to set up an OpenlLDAP server.
First, put your Red Hat CD-ROM into your CD-ROM drive and use the
following commands:

mount /dev/cdrom /mt/cdrom

cd / mt/ cdr oni RedHat / RPMVS

rpm —-Uhv openl dap—2*.r pm openl dap—-servers—*.rpm
openl dap—clients—*.rpm

umount /mmt/cdrom

It's possible that the packages are already installed on your system
(to verify this you can do rpm -g openldap), and also possible you
may hit one or more dependencies in installing the above RPMs. In
particular, the openldap packages require the openssl package, and
at least the krb5-libs package.

12

Centralised Authentication using OpenLDAP

Installing an OpenLDAP client

Installing the
OpenLDAP Client
RPMS

LDAP PAM and NSS
libraries

There are in fact two parts to being an LDAP client. The first part is
the OpenLDAP client libraries mentioned in the previous section,
which can be installed as follows:

mount /dev/cdrom /mt/cdrom

cd / mt/ cdr om RedHat / RPMVS

rpm —-Uhv openl dap—2*.r pm openl dap—clients—*.rpm
unount /mt/cdrom

Using LDAP will almost certainly require you to install the PAM
libraries for LDAP. In Red Hat 6.2 and later, these are packaged in
with the nss_ldap package (since the pam_ldap libraries are not
much use without the nss_ldap libraries, and vice-versa). These are
normally installed by default -- to test this you can do rpm -g
nss_ldap.

If the nss_ldap package is not installed, you can install it using RPM
as follows:

mount /dev/cdrom /mt/cdrom

cd / mt/ cdr om RedHat / RPNVB

rpm -Unhv nss_I| dap*. rpm

umount /mt/cdrom

If you need to obtain the source code for the pam_ldap and nss_ldap
libraries, they are available from PADL.com at the following
locations:

+ http://www.padl.com/pam_ldap.html for pam_ldap
« http://www.padl.com/nss_ldap.html for nss_ldap

13

Centralised Authentication using OpenLDAP

Configuring OpenLDAP

/etc/openldap/slapd. Configuration of openldap is done through the
/etc/openldap/slapd.conf file. There is a manual page describing the

conf

Sample conf file

contents of the slapd.conf file (see man slapd.conf) as well as an
excellent administration guide

(http://www.openldap.org/doc/admin/) on the OpenL.DAP web site.

As a starting point, you might like to use the following simple
configuration file:

#

i ncl ude / et c/ openl dap/ schema/ cor e. schema

i ncl ude / et c/ openl dap/ schena/ cosi ne. schema
i ncl ude

/ et c/ openl dap/ schena/ i net or gper son. schema

i ncl ude / et c/ openl dap/ schenma/ ni s. schena

i ncl ude / et c/ openl dap/ schema/ rf c822-

Mai | Menber . schena

i ncl ude / et c/ openl dap/ schena/ aut of s. schema
i ncl ude

/ et c/ openl dap/ schena/ ker ber osobj ect . schema

HHHBHEHHHH R R R R R R R R R R R R
| dbm dat abase definitions
HHHBHEHHHH R R R R R R R R R R R R R

dat abase | dbm

suffix "o=MyConpany, c=AU"

root dn "ui d=r oot , ou=Peopl e, o=MyConpany, c=AU"
r oot pw secret

directory /var/lib/ldap

Indices to maintain

i ndex obj ect d ass, ui d, ui dNunber , gi dNunber eq

index c¢n,mail,surname, gi vennane
eq, subinitial

#
ACLs
#

access to dn=".*, ou=Peopl e, o=MyConpany, c=AU"
attr=userPassword
by self wite
by dn="ui d=r oot , ou=Peopl e, o=MyConpany, c=AU" wite
by * auth

access to dn=".*, o=MyConpany, c=AU"
by self wite
by dn="ui d=r oot , ou=Peopl e, o=MyConpany, c=AU"' wite
by * read

access to dn=".*, o=MyConpany, c=AU"
by * read

def aul t access read

14

Centralised Authentication using OpenLDAP

Running OpenLDAP

More on slapd.conf

Starting OpenLDAP

There are a couple of things that will need noting in the
configuration file above:

Replace "o=MyCompany,c=AU" throughout the file with a Base
DN which represents your organisation. Note that I prefer to use
the X.500 style specification above, but you could use the DNS
specification which is "dc=mycompany,dc=com,dc=au” or similar.
For example, if your company was called "farnarkle.com” you
could use "dc=farnarke,dc=com", or you could use
"o=farnarke,c=US". Remember this Base DN, it will be important
later.

I have elected to include some elementary Access Control in the
file. The standard slapd.conf file included with Red Hat Linux
does not include ACLs, but they are mandatory for real use. You
may want to expand on the above ACLs -- see the slapd.conf
manual or the administrator's guide.

I have included a default root password -- secret This is a bad idea
once you have data in your LDAP directory. We will deal with this
later.

I have not included TLS certificates, keys, or other information. I
would consider this to be a security issue on a network, because
without these the server will operate entirely in plain text mode.
This will be covered later.

Once you have a working slapd.conf file, you should be able to start
your server. This is easy enough to do, you can just run the following
command:

/etc/rc.d/init.d/ldap start

Provided that the slapd.conf file is correct, you should be able to use
pstree to see a running slapd process. If the slapd.conf file is
incorrect, look for error messages (running slapd -d here might help),
fix up any problems you see, and try again.

15

Centralised Authentication using OpenLDAP

Migrating to OpenLDAP

Introduction

Using the supplied
LDAP tools

Until now, we have been going through a fairly standard
install/configure/start process, the sort of installation and
configuration that you might expect with any network service, such
as MySQL, Oracle, or PostgreSQL.

What we have now, however, is a working, but empty, LDAP
directory. This will only be of use once we have data inside it.

The first thing you need to do is to populate it with data. Data from
your existing authentication database should suffice, and OpenLDAP
provides an excellent set of migration scripts which can be used to
populate the directory.

OpenlLDAP provides a suite of tools to migrate data from your
existing NIS or /etc/passwd database into LDAP. If you currently run
another authentication scheme such as Kerberos or S/Key, and you
are migrating to LDAP, then I'm afraid you are on your own.

In Red Hat Linux 7.1, the migration tools are in
/usr/share/openldap/migration/. In Red Hat 6.2 and earlier they
were in /usr/lib/openldap/migration/. In either case, open a shell
window, change to that directory, and get to work.

First, edit the migrate_common.ph file. Around line 72 you will see a
couple of lines like this:

$DEFAULT_MAI L_DOVAI N = "babel . com au";
$DEFAULT_BASE = "o=Babel , c=AU";

You will need to edit these two lines, providing your default mail
domain, and the Base DN that you defined earlier in the slapd.conf
file.

Next, it's a simple matter of running the migration tools. This can be
done using a simple command, assuming that you are migrating
from /etc/passwd files to LDAP:

m grate_all _online.sh

(make sure that your LDAP server is running before using the above
command).

This will ask you for the root DN and password (enter the password
secret that we defined in the slapd.conf file), and will start to
populate your LDAP directory.

16

Centralised Authentication using OpenLDAP

Basic LDAP security

Secure the root
account

Denying password
read access

Other ACLs

The slapd.conf file that was set up earlier contains an entry for the
root DN, as well as a password. This password is used as a fallback
password for the root DN in case the entry is not found in the
directory. Of course, when you first set up LDAP with an empty
database, this entry was required. Now it is not, so you should
comment it out or remove it.

It should be the case that your root password was obtained from
your /etc/passwd or /etc/shadow file and inserted into LDAP. To
test this, repeat the above search, using the -D flag of ldapsearch to
attempt a logon to your LDAP directory, as follows:

| dapsearch —-x -D ' ui d=r oot , ou=Peopl e, o=MyConpany, c=AU
-W "’ ui d=r oot’

Idapsearch will ask you for a password -- enter your root password
here, and if everything goes to plan this should work correctly.

The slapd.conf file I gave earlier disallows read access to the
password attribute, by anyone other than the owner or the root user.
This makes sense, although it is not a default option of OpenLDAP (I
think it should be).

Note that "auth" access is allowed to the password access for all
users ("*"). This is required to allow people to authenticate to the
LDAP server.

"auth" access allows us to test our password against the password
stored in the directory, without being able to read that password.
This is handled internally by the LDAP server.

The ACL system within LDAP is quite complex, and can
allow/disallow access to individual attributes within an LDAP object.
This is useful, for example, if you have an LDAP client that is an HR
system, and you want to allow write access to the "salary” attribute
for the payroll officer only, and for users to be able to read but not
change their own salary. A sample ACL to do this might be:
access to dn=".*, ou=Peopl e, o=Babel , c=AU"
attr=sal ary

by self read

by dn="ui d=payrol | , ou=Peopl e, o=Babel , c=AU" wite

by * none

The ACL system is described in more detail in the OpenL.DAP
administrator's guide.

17

Centralised Authentication using OpenLDAP

Looking Inside OpenLDAP

Setting up LDAP queries

Setting up LDAP
queries

Performing a first
LDAP search

Having data in your LDAP directory is all very well and good, but at
some stage you are going to want to query that data. There are a
standard set of command line based LDAP query and management
tools provided with OpenLDAP. These include Idapadd, Idapmodify,
and Idapsearch. Each of these tools has a man page, and you would
do well to read these man pages in detail.

The standard configuration file for these tools is
/etc/openldap/ldap.conf. The file format of this file is fairly simple,
on a single system it need only contain the following two lines:

BASE o=MyConpany, c=AU
HOST 127.0.0.1

Remember to substitute your Base DN that you defined in the
slapd.conf file instead of the o=MyCompany,c=AU entry shown
above.

On a network, you may have to substitute the IP address of your
LDAP server instead of 127.0.0.1 shown above. For those of you who
understand LDAP concepts a little better: OpenLDAP doesn't (yet)
support SLP or DNS RR based location, so you have to be fairly
precise about the location of the server -- either an IP address, a host
name from /etc/hosts, or something that can be found in DNS.

Once you have done that, you should be able to perform a simple
search. You could start by looking for your root user by using the
following simple command:

| dapsearch —-x ’ui d=root’

You should see an entry fairly similar to this one:
version: 2

#
filter: uid=root
requesting: ALL
#

root, Peopl e, MyConpany, AU

dn: ui d=r oot , ou=Peopl e, o=MyConpany, c=AU

uid: root ... (etc)

Now that you have come this far, stop and smile a lot. You have
managed to get LDAP working, which is sometimes not an easy task!

18

Centralised Authentication using OpenLDAP

Setting up PAM and NSS for LDAP using authconfig

Note for users of old First, a warning: This only works with authconfig on Red Hat

systems

authconfig

Test your
configuration

versions 7.0 or later. If you are using Red Hat 6.2 or earlier then you
will need to read the man pages regarding the configuration files,
and edit them all by hand. Note also that there is no
/etc/pam.d/system-auth file on Red Hat 6.2.

Setting up PAM and NSS for LDAP requires editing a configuration
file in /etc/pam.d (/etc/pam.d/system-auth), modifying the NSS
configuration file which is /etc/nsswitch.conf, and editing the
pam_nss and pam_ldap configuration file which is /etc/ldap.conf

Fortunately, Red Hat provides a utility which will do this
automatically for you, called authconfig. To use this, run authconfig
from the command line.

Within authconfig, it is a fairly straight forwards exercise. Mark the
box labelled "Use LDAP". In the next boxes you should enter a value
for the Server (this will be the same IP address you used in
/etc/openldap/ldap.conf), and a Base DN (this will be the same as the
Base DN that you specified in /etc/openldap/slapd.conf)

Once you have finished that, then everything should be set up. I find
that the best way to test this is as follows:

« Firstly, find an account in your LDAP directory, using a command
like "ldapsearch -x 'uid=someaccount'. This account should be
one that has been copied from your /etc/passwd file that you had
on the system before setting up LDAP.

» Check that the account exists, using finger someaccount. You
should get a response showing the user id, name, and other
details.

« Using vi or another text editor, edit your /etc/passwd file and
remove the account.

« Using finger again, check to see if the account still exists. If
everything is going correctly, it will -- the account details are now
being fetched from LDAP instead of from /etc/passwd

19

Centralised Authentication using OpenLDAP

Command Line LDAP Tools

Introduction

Command line tools

Common parameters

OpenlLDAP comes with a range of UNIX command-line tools for LDAP

directory management. These tools are useful as a reference, and

since similar tools are provided with many other commercial LDAP

systems, it is a good idea to learn these.

The tools come with comprehensive man pages, however it may also

be best to read some LDAP information on the internet and/or an
LDAP administration guide in order to learn some of the
terminology.

The tools are:

+ ldapsearch -- for searching for entries in LDAP.

+ ldapadd -- for adding entries to LDAP.

» ldapmodify -- for editing entries in LDAP.

+ ldapdelete -- for deleting entries from LDAP.

» ldappasswd -- for changing an LDAP entry's password.
+ ldapmodrdn -- for renaming LDAP entries.

These tools mostly take a common set of command line parameters,

which include options such as:

+ -v -- verbose mode.

+ -k -- use Kerberos authentication

+ -X -- use simple authentication

» -C -- continuous operation (don't abort on error)

+ -f -- read the information from a file

+ -D -- specifies the LDAP DN to bind with

+ -W -- ask for a password for simple authentication

+ -H <URI> -- use a particular LDAP server, eg: -H
Idap://ldap.mycompany.com

20

Centralised Authentication using OpenLDAP

Other LDAP tools

Graphical Tools

GQ

Directory
Administrator

There is a wide variety of LDAP tools available for free or
commercially on the internet. A quick search on freshmeat for LDAP
will reveal several. Here are a couple that I quite like:

GQ is a powerful tool that allows you to look inside your LDAP
directory and administer any part of it. GQ allows full control over
your LDAP server, including:

» LDAP object browser

» Tools to add/delete/update LDAP entries

« LDAP schema browser

« Tools to build entries from other entries, or set up templates.

GQ allows you to get inside your LDAP directory and see the internal
workings of LDAP. GQ) is available in source code form from the web
site, and the source code includes a .spec file so that you can build
an RPM file for it if you prefer.

Directory administrator is an application for managing user and
group entries in an LDAP directory servers. It provides a friendly
interface to manage users' personal details, address book
information, and mail routing (for sendmail versions which support
mail routing information stored in LDAP.

I find Directory Administrator's interface simple and intuitive,
although it is not as powerful as GQ and doesn't go beyond simple
user and group management.

The author of Directory Administrator has been promising a new
version for some time, and I have a few items on my wish list for it,
the main issue being that its main window provides an unsorted and
unstructured view of all users in your directory tree. Where there are
a large number of users in your LDAP directory, this is unsatisfactory
(I have around 1500 in one LDAP tree I manage, and it would not be
uncommon for some organisations to have tens of thousands).

As a basic tool for managing user information on a small Linux
network with an LDAP directory, however, Directory Administrator is
a great tool.

21

Centralised Authentication using OpenLDAP

LDAP clients

What is an LDAP
client?

Netscape
Communicator

Netscape Mail and
Mozilla

An LDAP client is any program that can use LDAP for accessing
information.

We have covered the use of an LDAP server as an authentication
service, but other common types of access include looking up e-mail
addresses and other types of personal information in an LDAP
server.

Some companies prefer to call LDAP clients "Directory Enabled
Applications”. There is a technical term to describe the act of
making up complicated sounding names and acronyms to describe a
simple concept. The term is "wanking".

Netscape Communicator makes a great read-only LDAP client.
Simply type this URI into the location bar:

ldap://myldapserver/uid=root,ou=People,o=Mycompany,c=AU

You will see a result!

Both Netscape Mail (from Netscape Communicator) and Mozilla, as
well as many other e-mail clients, have the ability to look up e-mail
addresses in one or many LDAP servers. Within these applications,
the directory servers are set up in the "Preferences" section, or within
the address book.

There are few instructions on how to do this but the task is
reasonably straight forwards. Simply locate your directory server,
inform Netscape or Mozilla of its address, base DN, and any other
search criteria, and voila, you have a "directory enabled application”.

For other Linux mail clients I'm not sure how lucky you're going to
be. The text based ones don't seem to be in a big hurry to support
LDAP, although it is starting to appear in more of the graphical ones
such as Evolution, etc.

22

Centralised Authentication using OpenLDAP

Write your own LDAP client

Language support

Writing an LDAP
client

Portability

Of course there are C libraries for LDAP, but there are also Perl
modules (go look in CPAN), PHP support, Python support, etc. There
are several web-based graphical LDAP clients either written in Perl or
PHP available via freshmeat. Most of the web based mail systems
(eg: HORDE/IMP, phpGroupWare, etc) have at least rudimentary
LDAP support.

Of course there is no reason that you cannot extend the LDAP
schema for your organisation and start developing your own LDAP
clients, either in PHP, Perl, C, or whatever.

LDAP is really useful for storing "arbitrary” information about
people. It would make a great data store for an human resources
system, or payroll system, for example.

Remember that write access to an LDAP server is generally relatively
slow. Information that changes regularly may be best stored outside
of LDAP, whereas reasonably static information could be stored
within it (although I also subscribe to the principle of orthogonality
of information, which means you should really only have one data
store for your application).

One good thing about LDAP is that the protocol is portable between
LDAP servers. If you begin developing your application using
OpenlDAP, and later decide to run it on NDS, then it should port
relatively easily.

For example, GQ (mentioned earlier) makes a great graphical LDAP
browser for OpenLDAP, NDS and Active Directory as well.

23

Centralised Authentication using OpenLDAP

Advanced Topics

Red Hat Kickstart and OpenLDAP

Building systems withOccasionally I like to build systems using Red Hat's Kickstart tool.

kickstart The latest version of the Red Hat installation system includes some
kickstart options which can be used to connect a system to an LDAP
based network as a client during system installation time.

Kickstart Options The options are described in detail in the Red Hat Linux
Customization Guide but the main one you need is the "auth”
parameter which should read:

aut h ——enabl el dap —--enabl el dapaut h ——I dapser ver =<your
| dap server> —--basedn=<your base DN>

Red Hat also include some information on OpenLDAP in their Red
Hat Linux Reference Guide, especially chapter 4. If you are going to
use Kerberos authentication with OpenL.DAP then you will also need
to read chapter 9.

24

Centralised Authentication using OpenLDAP

Making OpenLDAP more secure

SSL and TLS

Configuration steps

SSL and StartTLS

The main way in which you can improve the security of OpenLDAP is
to include secure sockets layer (SSL) and transport layer security
(TLS) mode in your client/server connection. This encrypts all of the
LDAP traffic using the SSL protocol. OpenLDAP version 2.0 and later
have the capability to run in SSL and TLS mode using the OpenSSL
libraries, although you should really be using a version later than
2.0.7 to get this capability working properly.

The main steps you need to follow in getting OpenLDAP to work with
SSL are:

+ Make sure that OpenlLDAP is compiled with the OpenSSL libraries.
+ Generate SSL keys for OpenLDAP

+ Configure OpenLDAP to use the SSL keys

« Test!

Note that there are two different modes of operating OpenLDAP with
SSL. These are:

» TLS, otherwise known as "Start TLS" mode. This is the more
modern approach to secure communications, as it uses the same
TCP port number to connect to the OpenLDAP server (389) but
switches to secure communications using a "Start TLS" command
before any data is transferred.

» SSL mode, which operates on a different TCP port number (636)
from the standard LDAP port, and begins the connection in secure
mode.

TLS mode is more flexible than SSL mode (since clients or servers
that do not understand SSL can continue communicating by ignoring
the Start TLS command), but unfortunately many older LDAP servers
and clients do not implement this mode, and only use SSL mode.
Therefore it is preferable, in my opinion, to get your LDAP servers
and clients working in both TLS and SSL mode.

25

Centralised Authentication using OpenLDAP

Compiling OpenLDAP with OpenSSL

Use the RPMs

Compiling from
Source

Hopefully, this is the easiest part of the job. If you are using a
packaged installation of OpenL.DAP provided with, for example, Red
Hat or Debian Linux, you will find that this has already been done
for you. Once again, make sure that you have a recent version of
OpenlLDAP (from Red Hat, any version that is 2.0.7-3 or later should
be fine).

If you are compiling OpenL.DAP from source, you will simply need to
give the following additional flag when running the OpenLDAP
configure script:

——with-tls

You also need to make sure that the OpenSSL libraries are present on
your system.

26

Centralised Authentication using OpenLDAP

Generating SSL keys for OpenLDAP

Creating PEM format To use OpenLDAP in TLS or SSL mode you will need to generate a

keys

Key Building

No make?

Self signed keys

Important note

PEM format SSL key. Assuming that you have the OpenSSL package
installed (otherwise you would not be doing this), you will find a
Makefile in the /usr/share/ssl/certs directory that contains the
appropriate commands to create this key. You can run these with the
following simple command:

cd /usr/share/ssl/certs
make sl apd. pem

During the key building process, you will be asked for a whole raft of
details about your server. This includes the country code, state,
organisation name, e-mail address, server name, etc. Answer these
questions as best as you are able -- they are encoded in the PEM file.

If you do not have OpenSSL's Makefile, or you cannot run the "make"
program for some reason, then you will need to build the PEM file
manually. Here is a rough outline of the commands needed to do
this:

/usr/ bin/openssl req —newkey rsa: 1024 -keyout
tempfil el —-nodes -x509 —-days 365 -out tenpfile2

cat tenpfilel > | dap. pem

echo "" >> | dap. pem

cat tenpfile2 >> | dap. pem

rm-f tenpfilel tenpfile2

Note that this command creates an RSA key, and then self-signs that
key. Self-signed keys are not usual in (for example) HTTPS
communications, as the keys are generally signed by a third party
known as a Certification Authority. In this case, however, a self-
signed key is perfectly OK as most LDAP clients do not check the
signature of the key.

Of course, for more advanced users, it would be entirely possible to
generate a key and have it signed by an external Certification
Authority. It's up to you.

Once you have generated the keys, it is important that they are made
readable (only) by the user that is running the LDAP server. For Red
Hat Linux, OpenLDAP’s server (slapd) runs as an unprivileged user
called "Idap” in a group called "ldap”. To make this user and group
the owner of the key that you have just generated, run the following
command:

chown | dap. | dap sl apd. pem

27

Centralised Authentication using OpenLDAP

Configuring OpenLDAP to use SSL keys

Modify slapd.conf

Modify your startup
script

Restart LDAP

To configure OpenLDAP to use the SSL key you have just generated,
you need to modify the /etc/openldap/slapd.conf file. The following
lines will need to be added to the file. They can be anywhere in the
file, but I suggest putting them in close to the top, after all of the
"include" statements:

TLSG pher Suite H GH MEDI UM +SSLv2
TLSCertificateFile /usr/share/ssl/certs/slapd. pem
TLSCertificateKeyFile /usr/share/ssl/certs/slapd. pem

Note that there are different allowable values for the TLSCipherSuite
line, but the above line is the one that I recommend.

You may also need to modify your LDAP start up script. If you are
using Red Hat Linux version 7.0 or later then you don't need to do
this. Otherwise, you should locate the line in your startup script
(probably /etc/rc.d/init.d/ldap or /etc/init.d/ldap) that contains the
line to start slapd, and modify it to look like this:

slapd -h ""ldap:/// ldaps:///"’

It is the options after "-h" that we are most interested in at this point.
You will notice that we are telling the LDAP server to work in both
Idap and ldaps (secure) mode. Theoretically, once this is working,
you could turn ldap mode off and only use the secure mode, but this
is not recommended as many LDAP clients don't support this secure
mode. Note that there may be other options on the line that runs
slapd in your startup script, and you should leave those intact.

You will now need to restart your LDAP server in order for it to re-
read the slapd.conf file:

/etc/rc.d/init.d/ldap stop
/etc/rc.d/init.d/ldap start

28

Centralised Authentication using OpenLDAP

Testing OpenLDAP and SSL

netstat

Testing the raw
connection using
openssl

Output from openssl
s_client

LDAP clients

The first step in testing that your LDAP server is listening in SSL
mode is to run the following command:

netstat -a | grep LISTEN

Looking through the output of that command, you should see that
your slapd server is listening on port 389 (ldap) as well as port 636
(Idaps). If SSL mode is not working, then it will be listening on port
389 (Idap) only.

Fortunately, OpenSSL comes with not only a handy key generator,
but also an "SSL line tester". It works by running the following
command:

openssl s_client —connect |ocal host: 636 —-showcerts

Note that I have elected to use the direct connection to LDAP in SSL
mode rather than going through TLS ... the latter is possible, but
somewhat trickier.

If all goes to plan, you should see some output from your LDAP
server in the command window, showing information about the
certificate, as well as the certificate, session IDs, and master keys,
that are in use by the server.

You could now find an LDAP client that supports SSL or TLS mode,
such as GQ, turn on the option in the client that enables TLS mode,
and see if it works.

Enabling SSL support in the nss_ldap and pam_ldap modules is
relatively simple, just re-run authconfig to state that you want SSL
mode. Either that, or modify the /etc/ldap.conf file to include the
line:

ss|l start _tls

There are several other tls options in this file, you should ignore
those unless you have a specific need to perform certificate
verification (in which case you really should know what you are
doing and why).

Voila, you now have a secure LDAP server!

29

Centralised Authentication using OpenLDAP

Setting up an LDAP replica

Replicas and
reliability

Slapd and slurpd

Creating a "replica”
user

Enabling the master

Enabling the slave

Slave slapd and ACLs

Setting up an LDAP replica is an important part of reliability on a
network. LDAP replicas allow for load balancing, however the
current NSS and PAM clients for Linux don't currently support load
balancing and server failover in any intelligent way.

OpenlLDAP only supports a master/slave replica method, not a multi-
master method as supported by some LDAP servers. There are two
parts to a master LDAP server, these are "slapd”, which is the
standard LDAP server, and "slurpd”, which is the replicator.

Slurpd only runs on a master LDAP server that is forwarding its
updates to a slave server.

Before you begin any replication, use an LDAP client (eg: GQ) to
create a user account in LDAP that can be used for replication. Note
that it's possible to use the root account for this but generally I
would advise against it. [normally call this account "ldapreplica”.

A few extra parameters in the slapd.conf file are required to enable a
master server.

#

Replicas

#

replica host =192. 168. 1. 12: 389
bi nddn="ui d=| dapr epl i ca, ou=Peopl e, o=Babel , c=AU"
bi ndret hod=si npl e credenti al s=sonmepasswor d

A slave server requires a few extra parameters in the slapd.conf file:

updat edn "ui d=I daprepl i ca, ou=Peopl e, o=Babel , c=AU'

updat eref | dap://babel . babel . hone

The "updatedn" parameter restricts writes to the LDAP database to
this user only. This is because we don't want any other user other
than our replica user being able to write to the slave directory.

The "updateref” parameter gives a URI to pass back to LDAP clients,
essentially telling them to go elsewhere if they do attempt a write.

The ACLs in a slave slapd will need modifying to allow the
"ldapreplica” user write access to any part of the directory that needs
modification. For example:
access to dn=".*,6 o=Babel , c=AU"

by dn="ui d=I dapreplica, ou=Peopl e, o=Babel , c=AU" wite

by * read

30

Centralised Authentication using OpenLDAP

Using the Replica

ldap.conf

NSS and PAM

Don't do this

Now that you have a replica on your network, you essentially have
two places where you can perform LDAP queries.

The first place to specify these locations is in
/etc/openldap/ldap.conf, which is the default configuration file for
LDAP clients on your system.

The HOST line in this file can contain multiple entries, like this:

HOST 192.168.1.12 192.168.1.2

These entries specify a list of servers that can be tried for LDAP
queries, in priority order.

NSS and PAM use a separate ldap.conf file, located in /etc.

The format of this file currently only allows a single host line to
specify the address of the LDAP server.

For load balancing purposes on a large network, you could have
servers spread over a number of subnets, and use the /etc/ldap.conf
file to point NSS and PAM at the nearest server.

There is a really sneaky way of enabling failover in the nss_ldap. It
basically involves compiling up two separate nss_ldap libraries and
making them use different ldap.conf files. Of course you also have
to give them different names, and fiddle with your
/etc/nsswitch.conf file to make it all work.

I am really not going to describe how to do this, it's horrible.

31

Centralised Authentication using OpenLDAP

Schema Extensions

LDAP Schema

Here be dragons

ObjectClasses, and
Attributes

ASN.1

Earlier, I stated that "an object in an LDAP directory can contain an
arbitrary number of attributes, and each attribute can have an
arbitrary number of values”.

This is essentially correct, except for the fact that an LDAP server
allows us to define a schema, which defines the type of attributes for
each type of object, and what sort of values those attributes can
contain.

This section is reasonably complex, but fundamental to
understanding the way that LDAP works. You can avoid all of this
mess by enabling the following directive in your slapd.conf file:

schemacheck off

However, do not, under any circumstances, do that.

Each LDAP object has one or more "objectClass" attributes. Each of
these attributes names an object class that is defined in the LDAP
schema.

Each object class can define one or more attributes. These attributes
can be mandatory, optional, multi-valued, single-valued, and can
have a specific "syntax", which basically defines whether the values
can be strings, numeric, binary, etc.

The total list of attributes that an object must have is the sum of all
of the mandatory attributes of its object classes. Similarly, the list of
attributes that an object may have is the sum of all of the optional
attributes. Actually, by "sum" here, I mean "union of the set”" because
an attribute may be defined as mandatory or optional by more than
one object class.

Some LDAP servers store the LDAP schema, that is the list of object
classes, attributes, syntaxes, etc, in the directory. Some store it in a
separate database. OpenLDAP is fairly ugly, and stores it in ASN.1
format in plain text files. It does, however, allow read-only access to
this using a special syntax defined within LDAP, and GQ contains a
fairly useful schema browser for examining this schema in a more
friendly manner.

ASN.1 syntax is very ugly. If you absolutely need to extend the
OpenlLDAP schema then you will need to learn a bit about it, however
that's beyond the scope of this paper.

You can create ASN.1 entries by copying and modifying (carefully)
existing entries in the /etc/openldap/schema directory.

32

Centralised Authentication using OpenLDAP

Organisational Numbers

Obtaining an
organisation number

Extending the
organisation number

Each LDAP object class, attribute, syntax, and entry of any kind,
must have a unique distinguished number. This is a number of the
format "x.x.x.x.x.x.x ..." and so on.

These numbers are assigned, controlled, and issued by the IETF,
essentially the same body that makes up numbers in the
/etc/services and /etc/protocol files, as well as issues IP addresses,
etc.

Each organisation has a unique integer with which to prefix all of
their ASN.1 extensions of any protocol. The two most common
protocols that use these extensions are LDAP, and SNMP.

I have elected to obtain a single number for my company, and I use
this number for all of my clients. The number that I was issued with
is 9080.

All schema extensions begin with "1.3.6.1.4.1" and then this number.
So, all of my schema extensions begin with "1.3.6.1.4.1.9080".

Within the organisational prefix, you are allowed to do what you
want. | have elected to use the next digit as an "extension type"
prefix, 1 for SNMP, and 2 for LDAP. This is a fairly common
convention.

Within the LDAP extensions, I have decided to use ".1" for attributes,
and ".2" for object classes.

So, all of my personally defined LDAP attributes are numbered
beginning with "1.3.6.1.4.1.9080.2.1.1" and then
"1.3.6.1.4.1.9080.2.1.2" and so on.

I could have elected to break these extensions down by division (eg:
product manufacturing, electronics, marketing, etc). I could have
elected to break them down by customer, or by country or
geographical location. Entirely my own choice.

33

Centralised Authentication using OpenLDAP

Extending the Schema

Defining a simple
object class and
attribute

Single vs Multi value
attributes

In order to keep my schema extensions separate, | have put them in
a separate file in the /etc/opendlap/schema directory. I call this file
"babel.schema”.

Here are a couple of entries from it:

attributetype
1.3.6.1.4.1.9080.2.1.1
NAME ' bever age’
DESC ' Favourite Drink’
EQUALI TY casel gnor el A5Mat ch
SYNTAX 1.3.6.1.4.1.1466. 115.121. 1. 26

)

objectclass (1.3.6.1.4.1.9080.2.2.1
NAME ' dri nker’
DESC ' Per son who dri nks beverages’
AUXI LI ARY
MAY bever age)

This very simply defines a string attribute known as "beverage"
which I can optionally attach to any object that contains the
objectClass "drinker".

The attribute syntaxes are copied from an existing definition in
another schema file, although the full list of these can be obtained
on line.

All attributes are multi-valued by default. This means I can include
multiple entries in the "beverage" attribute defined above. This is
good, because sometimes I drink beer and sometimes I drink cider,
so I would prefer to include both.

An attribute can be defined as single valued by including the words
"SINGLE-VALUE" after the syntax. Have a look through the existing
schema files for some examples of this. For example, the nis.schema
file restricts the uidNumber attribute to be single valued -- this
makes sense as we don't want Unix users to have multiple UlDs.

34

Centralised Authentication using OpenLDAP

Including your schema extensions

Slapd.conf file

Stop, start, test,
restart

Using your schema
extensions

Other applications

The slapd.conf file defines all parameters for the LDAP server.

This file includes a number of schema files via "include" directives at
the top of the file. Simply add your schema extension to the
slapd.conf file as follows:

i ncl ude /etc/openl dap/ schena/ babel . schena

In order to get the LDAP server to re-read the slapd.conf file and
include your extensions, you must stop and re-start the server:

/etc/rc.d/init.d/ldap stop
/etc/rc.d/init.d/ldap start

Check that slapd is running again after you attempt this. If not,
there may be some syntax errors in your schema extension file. Look
for error messages in the system log files, try running slapd with the
-d parameter (for debugging), fix the problem, and restart.

Remember that to add an attribute of type "beverage" to an object we
must first define the object as being of class "drinker".

To do this, open an object in GQ (for example), and examine the list
of values of the objectclass attribute. Add a new value to this list,
being "drinker". Save the object, and re-load it. You will now see an
entry for the "beverage" attribute, in which you can enter one or
more values.

This is possible because GQ is clever enough to understand the LDAP
schema for each directory, and knows to put entry fields in for any
attribute that is allowed based on the list of objectclasses.

Your next task is to write an LDAP client (or "directory enabled
application" if you prefer) to use this attribute.

Search for all objects in the directory within the current location that
have the objectclass "drinker". Obtain the list of "beverages" and
compare this to a list obtained by performing a MySQL database call
to the refrigerator (your fridge does have an IP address these days,
does it not?). If a match is found in the directory that is not in the
refrigerator, then an XML/RPC call to the on-line ordering system of
the nearest provider of comestibles should suffice. If the transaction
fails, then you will have to interpolate the HTML code issued by your
bank's on-line banking system (you may have to crank up your SOAP
libraries instead and obtain this via XML over HTTP), transfer extra
funds into your credit card account, and try again.

Or whatever.

35

Centralised Authentication using OpenLDAP

OpenLDAP in
comparison to other
LDAP servers

Alternatives to
OpenLDAP

"Other" OS
alternatives

Issues with OpenLDAP

As much as I like free software, I have found a number of issues in
the time that I have been using OpenLDAP:

+ OpenlLDAP, in comparison to some LDAP servers such as iPlanet
DS and Novell's NDS, is quite slow. This is particularly noticeable
when both read and write operations are happening at the same
time.

« I have discovered at various points a number of bugs in the
OpenlLDAP servers and libraries. These cause several issues,
including things like having NSS lookups fail on occasion under
load, having SSL transactions terminate unexpectedly, and having
directory recovery problems after a system crash. To their credit,
the OpenLDAP team maintain an active and publicly accessible
bug tracking system where the status of such issues can be
tracked and monitored. On occasion I have managed to repair
certain bugs by reverting to previous versions of the NSS LDAP
libraries.

As alternatives to OpenLDAP, both Novell and iPlanet have (non-free,
non-open source) directory servers available on Linux. Both of these
work fine with the standard LDAP NSS and PAM libraries from PADL,
although Novell provide their own PAM and NSS libraries (for a
price).

Novell provide some tools to load appropriate schema extensions
into the NDS product to allow its use as an NSS server. These come
with the "NDS Enterprise Edition", whereas the basic NDS (the one
that now costs $US2 per user) comes only with sufficient schema
details for use as an authentication but not NSS server.

Windows 2000 server contains an LDAP server implementation.
You've probably heard of it, it's called "Active Directory".

Active Directory contains some weird and non-standard (i.e. Non-
IETF approved) schema extensions, although with an appropriately
recent nss_ldap module and some fiddling with the /etc/ldap.conf
file, Active Directory can be used in Linux as an authentication and
NSS service. To use Active Directory as an NSS service you will need
to load some schema extensions, and a few DLLs into the Active
Directory server to manage these extensions.

How to do that is well beyond the scope of this tutorial.

36

