
Simulation of IPv6 Networks with OMNeT++

Slide 1

Simulation of IPv6 Networks with OMNeT++
Y. Ahmet Şekercioğlu

Centre for Telecommunication and Information Engineering
Monash University, Melbourne, Australia

Slide 2

Contents

• OMNeT++ discrete-event simulation framework and our simulation research activities

• An overview of IPv4/IPv6 simulation models and IPv6Suite capabilities

– Example 1 “Ethernet Network”: IPv6 packets, autoconfiguration and duplicate address
detection (DAD)

– Example 2 “ICMPv6 Echo Request/Reply”: Observing data while simulation is running

• Modeling and Simulating Packet-Switching Networks

– An introduction to simulation of packet-switching networks: Stop and Wait Protocol

– Experiments with a simple packet switch

• Learning to write your own IPv6 network simulation models

– First IPv6 Model: Two clients, an Ethernet hub and a video server

• Simulation of Mobile IPv6 networks

– Example 3: A Wireless LAN with four access points

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 1

Simulation of IPv6 Networks with OMNeT++

Slide 3

Simulation Activities

IPv6 Networks:
Mobility

Seamless Handovers
Routing, Multicasting

Wireless QoS

Beyond 3G
Networks

New Router
Architectures &

Routing Table Search
Algorithms for IPv6

Fuzzy Logic for
Network Control &

QoS

Atcrc
Activities

Protocol Models: IPv6, MIPv6, Transport, DLC
Device Models: Routers, Switches

Link Models: Wireless, PPP, Ethernet
Traffic Models: Video Client/Server

OMNeT++ Simulation Framework

Topology Generation for
Large-Scale

Wired/Wireless/Mobile Nets
Parallel Simulation Mixed-Mode Simulation

� Synthetic topologies (Brite)
� Extracted from real networks

� Topology partitioning and
 load balancing
� Synchronization algorithms

� Hardware-in-the-loop
� Emulation (User-Mode
 Linux)

AIM: Performance
analysis of IPv6
networks (protocols,
topologies, algorithms)

AIM: An advanced
framework for
simulation
of large-scale networks

Slide 4

Simulation Framework: OMNeT++

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 2

Simulation of IPv6 Networks with OMNeT++

Slide 5

Why OMNeT++?

• An open source framework [OMN96] (free for research and educational purposes, GPL-like
license) which has an active, cooperating research community.

• Runs on Windows NT, Windows 2000, Windows XP, Linux, Compaq Tru64 and Sun Solaris
operating systems.

• Fully object-oriented architecture. Models can be formed by assembling other models
(“compound modules”), and dynamic behaviour is modeled as C++ based modules (“simple
modules”).

• Topology is defined through text files (excellent for automatic topology generation).

• Can simulate large networks - good scalability.

• Dynamic graphical user interface for tracing packet flows (very handy for fault-finding and
debugging models).

Slide 6

A Sample of Commercial Companies Using OMNeT++

• Native Networks is a manufacturer of high speed connectivity solutions for optical access
networks. They use OMNeT++ for simulating their systems’ performance in terms of bandwidth
utilization and teletraffic delay. They also use OMNeT++ for examining the behaviour of our
hardware’s state-machines and to generate verification vectors.

• Meriton Networks is using OMNeT++ to develop a performance model for a network of their
switches, using IETF draft definitions of protocols.

• American Automobile Association Response Services Center is using OMNeT++ for
evaluating and predicting network and processor performance. They have selected OMNeT++
to model their internal network to support load projections.

• Wipro Technologies is using OMNeT++ for network traffic modeling of ring and shared LAN
topologies to analyze the behaviour of layer-2 protocols.

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 3

Simulation of IPv6 Networks with OMNeT++

Slide 7

Contents

• OMNeT++ discrete-event simulation framework and our simulation research activities

• An overview of IPv4/IPv6 simulation models and IPv6Suite capabilities

– Example 1 “Ethernet Network”: IPv6 packets, autoconfiguration and duplicate address
detection (DAD)

– Example 2 “ICMPv6 Echo Request/Reply”: Observing data while simulation is running

• Modeling and Simulating Packet-Switching Networks

– An introduction to simulation of packet-switching networks: Stop and Wait Protocol

– Experiments with a simple packet switch

• Learning to write your own IPv6 network simulation models

– First IPv6 Model: Two clients, an Ethernet hub and a video server

• Simulation of Mobile IPv6 networks

– Example 3: A Wireless LAN with four access points

Slide 8

An Overview of OMNeT++ IPv4/IPv6 Simulation Model Sets

EXISTING MODELS NEEDED MODELS

Application Layer Video client-server Voice, Web, file transfer

Transport Layer UDP, TCP TCP testing only done
with IPv4 models, IPv6
waiting.

Network Layer IPv4, IPv6 Routing protocols, Diff-
Serv, Queue management

Data Link Control Layer Ethernet, PPP, IEEE 802.11 MAC for cellular

Physical Layer Simple access Radio propagation mod-
els, mobility models

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 4

Simulation of IPv6 Networks with OMNeT++

Slide 9

IPv6Suite

• We have developed a set of OMNeT++ models for accurate simulation of IPv6 protocols.

• Our simulation set models the functionality of the following RFCs:

– RFC 2373 IP Version 6 Addressing Architecture

– RFC 2460 Internet Protocol, Version 6 (IPv6) Specification

– RFC 2461 Neighbor Discovery for IP Version 6 (IPv6)

– RFC 2462 IPv6 Stateless Address Autoconfiguration

– RFC 2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
Specification

– RFC 2472 IP Version 6 over PPP

– RFC 2473 Generic Packet Tunneling in IPv6

– RFC draft: draft-mobile-IPv6-spec

• We have developed XML based parsing modules for flexible configuration of network node
parameters (more details later)

Slide 10

IPv6Suite is a Large Software Project

The Team: E. Wu, J. Lai, S. Woon, J. Fjeldberg, A. Şekercioğlu

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 5

Simulation of IPv6 Networks with OMNeT++

Slide 11

IPv6Suite Web Site for Downloads and Documentation

http://ctieware.eng.monash.edu.au/twiki/bin/view/Simulation/IPv6Suite

Slide 12

Related Simulation Research at CTIE

http://ctieware.eng.monash.edu.au/twiki/bin/view/Simulation

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 6

Simulation of IPv6 Networks with OMNeT++

Slide 13

Example 1: Address Auto-Configuration, Duplicate Address Detection in IPv6

• Can be found among the
examples downloadable
through the IPv6Suite Web
site (EthNetwork).
• IPv6Headers.h and
ICMPv6Message.hdefine the
packet types.

Slide 14

Example 2: ICMPv6 Echo Request/Reply - Observing Network Dynamics

• Can be found among the
examples downloadable
through the IPv6Suite Web
site (PingNetwork).
• We can observe the
dynamic values while the
simulation is in progress.

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 7

Simulation of IPv6 Networks with OMNeT++

Slide 15

Contents

• OMNeT++ discrete-event simulation framework and our simulation research activities

• An overview of IPv4/IPv6 simulation models and IPv6Suite capabilities

– Example 1 “Ethernet Network”: IPv6 packets, autoconfiguration and duplicate address
detection (DAD)

– Example 2 “ICMPv6 Echo Request/Reply”: Observing data while simulation is running

• Modeling and Simulating Packet-Switching Networks

– An introduction to simulation of packet-switching networks: Stop and Wait Protocol

– Experiments with a simple packet switch

• Learning to write your own IPv6 network simulation models

– First IPv6 Model: Two clients, an Ethernet hub and a video server

• Simulation of Mobile IPv6 networks

– Example 3: A Wireless LAN with four access points

Slide 16

Modeling and Simulating Packet-Switching Networks

• Step 1: Identify the components and their decomposition: compound modules Vs simple
modules.

• Step 2: Create the compound modules by using NED and/or GNED.

• Step 3: Create the simple modules (“dynamic behaviour”) by writing the C++ code.

• Step 4: Create a series of experiments (“runs”) by writing the omnetpp.ini.

• Step 5: Create the simulation executable.

• Step 6: Run the experiments, collect and analyze the data (PLOVE, custom scripts, other data
visualization and analysis tools).

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 8

Simulation of IPv6 Networks with OMNeT++

Slide 17

Introduction to Simulation of Packet-Switching Networks: Stop-And-Wait

• We will simulate two hosts (a sender and a receiver) connected via a “perfect” communication
link.

• Sender will send a “data packet” to the receiver, and will wait for an “acknowledgment packet”.

• We need a project directory, I suggest $HOME/oppsim/stopnwait.

• Then, let’s write the topology file: stopnwait.ned.

Slide 18

stopnwait.ned

1 simple Host

2 gates:

3 in: in;

4 out: out;

5 endsimple

6

7 module SenderReceiverNetwork

8 submodules:

9 sender: Host;

10 receiver: Host;

11 connections:

12 sender.out --> receiver.in;

13 sender.in <-- receiver.out;

14 endmodule

15

16 network // We can have multiple networks defined in a single NED file.

17 senderreceivernet : SenderReceiverNetwork

18 endnetwork

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 9

Simulation of IPv6 Networks with OMNeT++

Slide 19

GNED: Graphical Editor for NED Topology Files

We can use GNED to view and edit the topology: gned stopnwait.ned.

Slide 20

Implementation of the Host Dynamic Behaviour

• We now need to implement the functionality of the simple module Host.

• This is achieved by writing two C++ files:

– host.h→ Class definition of the host

– host.cc→ Implementation of the host

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 10

Simulation of IPv6 Networks with OMNeT++

Slide 21

host.h

1 #include "omnetpp.h"

2

3 // Derive the Host class from cSimpleModule.

4 class Host : public cSimpleModule

5 {

6 // This is a macro; it expands to constructor definition etc.

7 // 16384 is the size for the coroutine stack (in bytes).

8 Module_Class_Members(Host, cSimpleModule, 16384);

9

10 // This redefined virtual function holds the algorithm.

11 virtual void activity();

12 };

Slide 22

host.cc - Part 1/2

1 #include <stdio.h>

2 #include <string.h>

3 #include "omnetpp.h"

4 #include "host.h"

5

6 Define_Module(Host); // register the module types to the OMNeT++

7

8 void Host::activity()

9 {

10 ev << "Hello World! I’m " << name() << ".\n";

11

12 // Am I sender or receiver?

13 if (strcmp("sender", name()) == 0) {

14 // Sender will send the first packet and will wait for ack.

15 cMessage *msg = new cMessage(name());

16 ev << name() << " sending 1st msg: "<< msg->name() << ".\n";

17 send(msg, "out");

18 }

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 11

Simulation of IPv6 Networks with OMNeT++

Slide 23

host.cc - Part 2/2

1 // Infinite loop to process events.

2 for (;;) {

3 cMessage *msgin = receive();

4 ev << name() << " got msg: " << msgin->name() << ".\n";

5 delete msgin;

6 wait(1.0);

7 cMessage *msg = new cMessage(name());

8 ev << name() << " sending msg: " << msg->name() << ".\n";

9 send(msg, "out");

10 }

11 }

12

Slide 24

omnetpp.ini

We now write the omnetpp.ini file which tells simulation system what to do.

1 [General]

2 ini-warnings = no

3

4 [Tkenv]

5 default-run=1

6

7 [Cmdenv]

8 module-messages = yes

9 verbose-simulation = no

10

11 [Run 1]

12 network=senderreceivernet

13

14 # I could define a series of experiments as [Run 2] ...

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 12

Simulation of IPv6 Networks with OMNeT++

Slide 25

Time to Run the Simulation

• We create the Makefile which will help us compile and link our program to create the
executable stopnwait:

opp_makemake

• Let’s compile and link:
make

• Let’s run:
./stopnwait

Slide 26

Models of Communication Links

• In real life communication networks, the links carrying the packets involve propagation delays,
bit error rates and varying transmission capacities.

• OMNeT++ allows researchers to have sophisticated communication link models.

• As an example we can modify the stopnwait.ned to have a more realistic link:

1 channel srlink

2 delay 0.5 //sec.

3 datarate 100000

4 end channel

5 ...

6 sender.out --> srlink --> receiver.in;

7 sender.in <-- srlink <-- receiver.out;

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 13

Simulation of IPv6 Networks with OMNeT++

Slide 27

Contents

• OMNeT++ discrete-event simulation framework and our simulation research activities

• An overview of IPv4/IPv6 simulation models and IPv6Suite capabilities

– Example 1 “Ethernet Network”: IPv6 packets, autoconfiguration and duplicate address
detection (DAD)

– Example 2 “ICMPv6 Echo Request/Reply”: Observing data while simulation is running

• Modeling and Simulating Packet-Switching Networks

– An introduction to simulation of packet-switching networks: Stop and Wait Protocol

– Experiments with a simple packet switch

• Learning to write your own IPv6 network simulation models

– First IPv6 Model: Two clients, an Ethernet hub and a video server

• Simulation of Mobile IPv6 networks

– Example 3: A Wireless LAN with four access points

Slide 28

First IPv6 Network Model: 3HostLAN

We will now build this network by using the
IPv6Suite. To do this, we will create a project
directory IPv6Suite/Examples/3HostLAN, and write
four files (we will not be writing any CC files since we
will be using the existing models):

1. Topology description file threehostlan.ned

2. Simulation control file omnetpp.ini

3. Network address and routing configuration file
3HostLAN.xml

4. Compilation configuration file CMakeLists.txt

IPv6Suite introduces the .xml and CMakeLists.txt

files for fine-grain configuration of the network
parameters and flexible control of the complex build
process respectively.

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 14

Simulation of IPv6 Networks with OMNeT++

3HostLAN Topology Description File threehostlan.ned

1 import // IPv6Suite modules.

2 "EtherHub",

3 "UDPNode",

4 "WorldProcessor";

5
6 module threehostlan

7 submodules:

8 worldProcessor: WorldProcessor; // Does the XML parsing,

9 // needs to

10 // be the first in the

11 // modules list since every

12 // other module relies on

13 // this one.

14 display: "b=17,17;p=165,156;i=bwgen_s";

15 client1: UDPNode;

16 parameters:

17 numOfPorts = 1;

18 gatesizes:

19 in[1],

20 out[1];

21 display: "p=42,56;b=36,32;i=comp";

22 client2: UDPNode;

23 parameters:

24 numOfPorts = 1;

25 gatesizes:

26 in[1], // NED can have an array of

27 out[1]; // gates. See hcube example.

28 display: "p=42,156;b=36,32;i=comp";

29 server: UDPNode;

30 parameters:

31 numOfPorts = 1;

32 gatesizes:

33 in[1],

34 out[1];

35 display: "p=288,106;b=36,32;i=comp";

36 ethernetHub: Hub;

37 parameters:

38 numOfPorts = 3;

39 gatesizes:

40 in[3],

41 out[3];

42 display: "p=165,106;b=32,30;i=xconn";

43 connections:

44 client1.in[0] <-- delay 10ms <-- ethernetHub.out[0];

45 client1.out[0] --> delay 10ms --> ethernetHub.in[0];

46
47 client2.in[0] <-- delay 10ms <-- ethernetHub.out[1];

48 client2.out[0] --> delay 10ms -->ethernetHub.in[1];

49
50 server.in[0] <-- delay 10ms <-- ethernetHub.out[2];

51 server.out[0] -->delay 10ms --> ethernetHub.in[2];

52 display: "p=10,10;b=308,184";

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 15

Simulation of IPv6 Networks with OMNeT++

53 endmodule

54
55 network

56 threeHostLan : threehostlan

57 endnetwork

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 16

Simulation of IPv6 Networks with OMNeT++

3HostLAN Network Address and Routing Configuration File: 3HostLAN.xml

1 <?xml version="1.0" encoding="iso-8859-1"?>

2 <!DOCTYPE netconf SYSTEM "../../Etc/netconf2.dtd">

3 <netconf debugChannel="debug1.log:notice:xmlAddresses:UDPVidStrmSvr:Ethernet:debug">

4 <global gHostDupAddrDetectTransmits="2"/>

5 <local node="server">

6 <interface name="eth0">

7 <inet_addr>fe80:0:0:0:606:98ff:fe24:52f5</inet_addr>

8 </interface>

9 </local>

10 <local node="client1">

11 <interface name="eth0">

12 <inet_addr>fe80:0:0:0:606:98ff:fe24:52f6</inet_addr>

13 </interface>

14 </local>

15 <local node="client2">

16 <interface name="eth0">

17 <inet_addr>fe80:0:0:0:606:98ff:fe24:52f7</inet_addr>

18 </interface>

19 </local>

20 </netconf>

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 17

Simulation of IPv6 Networks with OMNeT++

3HostLAN Simulation Control file omnetpp.ini

1 [General]

2 network = threeHostLan

3
4 total-stack-kb=7535

5 ini-warnings = no

6 warnings = no

7 sim-time-limit = 101s

8
9 [Cmdenv]

10 module-messages = yes

11 event-banners=no

12
13 [Tkenv]

14 default-run=1

15 breakpoints-enabled = no

16 animation-speed = 1.0

17
18 [Parameters]

19 threeHostLan.client1.ping6App.startTime=30

20 threeHostLan.client1.ping6App.deadline=100

21 threeHostLan.client1.ping6App.destination="fe80:0:0:0:606:98ff:fe24:52f5"

22 threeHostLan.client1.ping6App.interval=0.5s

23
24 threeHostLan.client2.numOfUDPClientApps=1

25 threeHostLan.client2.udpAppClients[0].UDPAppClientName=

26 "UDPVideoStreamCnt"

27 threeHostLan.client2.udpAppClients[0].UDPServerAddress=

28 "fe80:0:0:0:606:98ff:fe24:52f5"

29 threeHostLan.client2.udpAppClients[0].UDPServerPort=7001

30 threeHostLan.client2.udpAppClients[0].IPversion=6

31
32 threeHostLan.server.numOfUDPServerApps=1

33 threeHostLan.server.udpAppServers[0].UDPAppServerName="UDPVideoStreamSvr"

34 threeHostLan.server.udpAppServers[0].IPversion=6

35 threeHostLan.server.udpAppServers[0].UDPPort=7001

36
37 threeHostLan.*.IPv6routingFile ="3HostLAN.xml"

38
39 include ../../Etc/default.ini

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 18

Simulation of IPv6 Networks with OMNeT++

Slide 29

CMake Build System

• With IPv6Suite we have started experimenting with the CMake (www.cmake.org) build system.

• CMake is used to control the software compilation process using simple platform and compiler
independent configuration files.

• CMake generates native makefiles and workspaces that can be used in the chosen compiler
environment.

• Simple configuration files placed in each source directory (called CMakeLists.txt files) are used
to generate standard build files (e.g., makefiles on Unix and projects/workspaces in Windows
MSVC) which are used in the usual way.

• CMake can compile source code, create libraries, generate wrappers, and build executables in
arbitrary combinations.

3HostLAN Build Process Control File CMakeLists.txt

1 SET(3HostLAN_ned_includes

2 ${TOPDIR}/Nodes

3 ${TOPDIR}/IP/DualStack

4 ${TOPDIR}/NetworkInterfaces

5 ${TOPDIR}/Transport/TCP

6 ${TOPDIR}/Transport/UDP

7 ${TOPDIR}/Applications/Ping6

8 ${TOPDIR}/IP/IPv4/MAC_LLC

9 ${TOPDIR}/IP/IPv6/Generic/

10 ${TOPDIR}/IP/IPv4/QoS

11 ${TOPDIR}/IP/IPv4/IPProcessing

12 ${TOPDIR}/World

13 ${TOPDIR}/PHY)

14
15 CREATE_SIMULATION(3HostLAN 3HostLAN_ned_includes threehostlan)

16 LINK_OPP_LIBRARIES(tk3HostLAN "${OPP_TKGUILIBRARIES}")

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 19

Simulation of IPv6 Networks with OMNeT++

Slide 30

Compiling and Running the 3HostLAN Simulation

After writing the threehostlan.ned, omnetpp.ini, 3HostLAN.xml, and CMakeLists.txt, we are
almost ready to see some results. Still a few more steps are needed:

1. We need to include our new model into the build system. To do this, we edit the
/oppsim/IPv6Suite/Examples/CMakeLists.txtfile and add the directory 3HostLAN to the line

SUBDIRS(EthNetwork MelbourneNetwork PingNetwork

Otherwise, build system will ignore our new model.

2. We go to /oppsim/IPv6Suitedirectory and issue the command
cmake .

Now CMake will generate the necessary Makefiles.

3. We now go to 3HostLAN directory and issue the command
make

to produce the model. From now on if we modify our model, we only need to reissue the make

command in the 3HostLAN directory.

4. We run the model: ./3HostLAN.

Slide 31

Contents

• OMNeT++ discrete-event simulation framework and our simulation research activities

• An overview of IPv4/IPv6 simulation models and IPv6Suite capabilities

– Example 1 “Ethernet Network”: IPv6 packets, autoconfiguration and duplicate address
detection (DAD)

– Example 2 “ICMPv6 Echo Request/Reply”: Observing data while simulation is running

• Modeling and Simulating Packet-Switching Networks

– An introduction to simulation of packet-switching networks: Stop and Wait Protocol

– Experiments with a simple packet switch

• Learning to write your own IPv6 network simulation models

– First IPv6 Model: Two clients, an Ethernet hub and a video server

• Simulation of Mobile IPv6 networks

– Example 3: A Wireless LAN with four access points

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 20

Simulation of IPv6 Networks with OMNeT++

Slide 32

A Wireless LAN with Four Access Points

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 21

Simulation of IPv6 Networks with OMNeT++

References

[OMN96] OMNeT++ object-oriented discrete event simulation system. URL reference:
http://www.omnetpp.org, 1996.

Y. Ahmet Şekercioğlu ipv6-simulation.tex,v1.2 22

