
Maintaining lots of apt-get
capable linux machines
with apt and getupdates

Marc MERLIN
marc_soft@merlins.org

Linux.conf.au 2004

What you don't want

➢ Each sysadmin installed a server from some install CD.
(If you're lucky, it might be the same CD, but if not, it
might be different releases, or even worse, different
distributions)

➢ Each server has local, unknown, customizations from
each sysadmin

➢ You have 300 workstations with an old version of some
distro, and you have to upgrade sshd, or convert them to
autofs with ldap

➢ Install server? What install server?

Challenges
➢ You mean I have to maintain workstations where users

have root and can install and remove random software?
➢ Why maintain servers and workstations separately?
➢ But how do I keep all this in sync when all the machines

don't even have the same list of software installed?
➢ How do I even update software? How about conf files?
➢ Do I need to change the install each time I make changes

to the installed base?
➢ How about machines that were loaded before I changed

the install but after I synced the change to the installed
base?

Non working solutions I've seen
➢ All workstations rsynced from central image

➢ very heavy on the rsync server(s)

➢ nightmare to maintain rsync includes/excludes

➢ unsafe to upgrade libc

➢ hard to maintain local software

➢ chroot live image with ssh/scp pushes
➢ much better (install & clients in sync)

➢ support for local software

➢ disaster if some clients can be down since they miss updates

➢ nice install server with no updates
➢ No comments...

➢ nice install server with push updates
➢ what about clients that are down during updates?

➢ install out of sync with pushed updates

Requirement for a good solution
➢ Should work for several class of clients (servers, light

servers, workstations...)
➢ clients should always end up being up to date (replay

updates in order if you were down)
➢ if an update fails, it will retry later
➢ an update failure should not put a client into an unknown

state it may not be able to recover from
➢ The install should be updated at the same time than the

installed base, and there should be no lapse of time for new
installs

➢ Some downgrade/rollback capability

Getupdates bonuses

➢ Initial install can be on CD/DVD, nfs/ftp/http, or made
with an out of date disk copy

➢ clients are up to date as soon as they reboot after the install
➢ lead and gold (i.e. unstable vs stable)
➢ you know about all your clients:

• cpu/memory/disk/hardware information

• linux kernel version

• list of packages installed

• all users logged in the machine present and past / machine “owner”

• convert between hostname, IP, and MAC address (useful when the client
is down)

Implementation: Basics
➢ apt-get takes care of installing packages and their

dependencies (computed automatically) via nfs/http/ftp
➢ changesets are a comprized of a shell script and a

compressed tar archive containing optional files used by
the update (just two files to retreive, which is easier for
http/ftp)

➢ getupdates is the core of the install and update
mechanism and pulls changesets via nfs/http/ftp.

getupdates runs at install time and from cron, checks the
update server for a list of changesets for the client's
$TARGET, and retrieves the update if it's new, or if it's
been modified since the last time it was run.

Implementation: Variables

➢ /etc/sysconfig/getupdates:
TARGET=wkslead

NFSHOST=software.nfs

NFSSWPATH=/software -> $NFSHOST/$NFSSWPATH (boot media) or $NFSSWPATH (autofs)

PROTOCOL=nfs

WORKDIR=/var/lib/grhat

STATBASE=/auto/clientinfo -> runtime (autofs)

NFSSTATMNT=clientinfo.nfs:/clientinfo -> load time from boot media

➢ $TARGET determines lead vs gold and wks vs srv
➢ clientinfo is NFS only and for stats and logs
➢ $PROTOCOL is current http or nfs, and can be ftp easily

Implementation: Layout

➢ File layout in the install tree:

Implementation: Postinstall

➢ You need to bootstrap getupdates via HTTP/FTP/NFS
➢ We read config options from /proc/cmdline: options are

passed to install kernel (via syslinux / other boot loader)
➢ Some getupdates logic in postinstall to get load options, use

them to retreive getupdates and its tools, install them on
disk, and save boot options in /etc/sysconfig/getupdates

➢ Distribution specific, but needs to be run in a chroot after
the distro's install has completed (%post in a Red Hat
kickstart file)

➢ Install getupdates ASAP so that it can continue the install if
machine crashes or gets unplugged during postinstall

Implementation: Postinstall Code

Implementation: getupdates funcs

➢ All changesets have to include funcs to get wrappers and
install functions:
● reads $WORKDIR / $LEADGOLD / $MACHTYPE (srv vs wks)

● installlink: move a file out and make a symlink (like resolv.conf)

● installfile: complex function that provides 8 ways to install a file

● chattr: only run if argument is file, and skip symlinks

● removefiles: delete file only if it's there, and after chattr -i

● rotatefile: move a file out before a new one is installed (used by
changesets and installfile, before replacing a stock file)

● rpm/dpkg wrapper that removes expected stderr output

● apt-get wrapper that defaults to -q –trivial-only for safety

● apt-get-force when you really need it (apt-get -q -y)

Implementation: installfile

➢ We need to take care of many cases:
● if file is mutable, rotate out, install new file as immutable, and record

operation in WORKDIR/state/changedfiles

● optionally, install without rotation (overwrite), like in /etc/cron.daily

● if file is mutable but in changedfiles, it's been user modified, skip

● if file is immutable, upgrade getupdates maintained file in place

● or force rotation anyway

● or install a file in place and leave mutable by specifying the md5sum of
the intended target (which leaves it alone if the user modified it)

Implementation: Changeset Rules

➢ There are many rules for writing changesets:
● changesets are numbered in the order you need them to run

● changesets can be run multiple times and have to be written accordingly

● do not generate any stderr output unless it's a warning or error

● changesets run under bash's errexit. All lines of code have to return true

● you cannot change the current directory, but you can use pushd/popd

● you must not use apt-get install -y foo to get its dependencies: list all the
dependencies and remove conflicting packages first. This safeguards you
against some package removing other ones you didn't expect

● remember, this all runs unattended, expect the unexpected and be very
careful

Implementation:
Changeset Examples

Implementation: Changeset Push
➢ copy changeset code to targets/wkslead/xxxxx/runme
➢ note that new installs could break at that time, test on lead,

not on gold
➢ copy new files used by changeset in xxxx/files/....
➢ use makefile to rebuild workfiles.tar.bz2
➢ go on a client and remove $WORKDIR/state/xxxx
➢ run getupdates to check changeset on a client
➢ change updatedate on the server for other clients to pick up

the new changeset

Implementation: apt trees

➢ apt tree setup obviously distro specific
➢ apt-rpm setup example available with getupdates distro
➢ recommended setup:

● aptroot/targets/lead
● aptroot/targets/gold
● aptroot/targets/links

➢ makefile to sync from main apt tree to lead and then gold
➢ optional extras shadowed out with pinning

Stats and logs: clientinfo

➢ Keep track of how many machines you have, what they run
and whether updates are failing
● /auto/clientinfo: hostname -> MAC and IP -> MAC

● /auto/clientinfo/MAC (mutiple versions in ontap snapshots)

 hardware config info: cpuinfo, df, lspci
 system info: ps-auxww, free, uname-a
 machine info in symlinks: hostname, ip, uuid (RHN)
 getupdates run info: log/log.last/log.update
 machine load info: target (wkslead vs srvgold...), rpm-qa
 user info: owner, who

pushing: runcmd

➢ Uses ssh key root logins to send commands to all
machines

➢ Imperfect: any client can be up or down at any time
➢ Uses:

● Mostly recovering from complete getupdates failure
● Dirty fix on “most” machines
● trigger a pull on most machines (runcmd getupdates)
● quick info poll without writing a changeset

Thank god for symlinks

➢ /etc/resolv.conf -> per office subdomains for service names
➢ /etc/crontab -> crontab.srv | wks
➢ /etc/auto.net
➢ /etc/syslog.conf
➢ /etc/nsswitch conf (with/without ldap/nis)
➢ /etc/pam.d/system-auth (with/without kerberos/ldap)
➢ /etc/X11/XF86Config
➢ etc..

What's missing / TODO
➢ Automated, fully failsafe, rollbacks

➢ quite hard to implement without snapshots in the filesystem (lvm2 ?)

➢ Add checksums/gpg signatures
➢ not too hard to do, but mostly useless if you don't make sure all your contrib

rpms/debs are also signed -> lots of work

➢ crond watcher and restarter
➢ Need to get around to that one day :)

➢ clientinfo reporting over HTTP and not just NFS
➢ would be a little work and require a specialized CGI with http upload

➢ backup getupdates when you sync a bad getupdates
➢ critical missing piece if you update getupdates and make a fatal mistake

➢ watch /var/log/getupdates and retrieve and run shell script from a central server if
the last update is too old (try 4 bytes of the IP, and then 3, 2, 1, and just failsafe)

Questions

