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Who Are We?

Andrew Cowie
spends an awful lot of 
time programming 
for someone who is 
actually a suit. He 
started with C in the 
early 80s, picked up 
Java in 1997, and 
now, 10 years later, 
is the maintainer of 
the java-gnome 
project. 

Davyd Madeley
has been 
programming for a 
long time. He now 
works as a software 
engineer, writing GTK 
applications for 
geophysical analysis. 
Previously he was the 
gnome-applets 
maintainer. He plays 
the tenor saxophone.



An Overview

● Why choose GTK+ for your application?

● GTK+ Fundamentals

– Building a UI
– Box packing
– The main loop & signals

● Getting started (in C)

● Window tricks (in Java)

● Complex data models (in Python)



Why Would You Choose GTK+?

● Fast, flexible, ubiquitous
● Multi-platform

– Linux, Unix, Mac OS, Win32, and more

● Many languages
– C, Python and Java
– Perl, C++, Ruby, Haskell, C#, PHP, OCml, Eiffel, 

Erlang, Guile/Scheme/Lisp, Lua, Octave, D, TCL, 
Smalltalk, and more!

● LGPL



A Word on Versions

● Today we're using the following:
– gcc 4.1.x
– GTK+ 2.12.x
– Python 2.5
– pyGTK 2.10
– Sun Java 1.5 (& Free Java too!)
– Eclipse 3.3.x
– java-gnome 4.0.6rc1
– Glade 3.4.x



Widgets 'n stuff

● all displayed items are a GtkWidget; all 
interfaces are built down from a “top level”, 
inevitably  GtkWindow



Building a UI

● You can write code ...
– Programmatically create elaborate custom content, 

dynamic layouts, and smaller Widgets



C Demo!

A
 GtkWindow

with a
GtkButton

in it!



Compiling

gcc -o demo \
`pkg-config --cflags --libs \
 gtk+-2.0` demo.c



Building a UI

● You can write code ...
– Programmatically create elaborate custom content, 

dynamic layouts, and smaller Widgets

● or use Glade ...
– Great for big, complex windows with lots of Layout



C Demo!

A
 GtkWindow

with a
GtkButton
with Glade!



Building a UI

● You can write code ...
– Programmatically create elaborate custom content, 

dynamic layouts, and smaller Widgets

● or use Glade ...
– Great for big, complex windows with lots of Layout

● or do both simultaneously!
– No point using Glade if coding it directly is less 

lines of code
– Use Glade for most of Window (ie, Labels) and 

code for the dynamically generated bits



Box Packing

GTK+ uses a
“box packing” 

model.



Box Packing

● Start with a GtkWindow
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Box Packing

● Start with a GtkWindow

● Pack a GtkVBox into the Window

● Pack a GtkLabel into the VBox

● Pack a GtkButton into the VBox

● Pack a GtkStatusbar into the VBox



Button an atomic element, right?

GtkButton



Button is a composite Widget too!

GtkHBox



Button an atomic element, right?

GtkImage GtkLabel



Or go the other way. Your icon,

GtkImage



...some text...

GtkLabel



a Container to hold them

GtkHBox



pack 'em in

GtkLabelGtkImage



and you've got your Widget

MyCustomButton



Glade Demo!

Using
Glade

to do complex
Box packing

layouts



Packing Containers

● GtkVBox – vertical packing

● GtkHBox – horizontal packing

● GtkTable – rows and columns

● GtkHButtonBox – Buttons horizontally

● GtkAlignment – fine grained layout control.

Also,
● GtkSizeGroup – child Widgets share same 

horizontal/vertical size.



The Main Loop

● GUI programming is event driven programming
● The main loop polls sources for events
● events include user activity (keyboard or 

mouse), I/O, or a timeout
● events issued as named signals; register 

callbacks for signals you want to react to



The Main Loop

Callbacks for events are 
issued from the main loop...

... one at a time

... and it's single threaded!

DON'T BLOCK 
THE MAIN LOOP!



Signals

● Signals are connected to GObjects

● Often you pass 4 things:
– object
– signal name
– callback function
– optional free-form “user data”

● Prototype for each callback in API docs
● Some callbacks return information to GTK+ 

(eg a gboolean)



Signals – C

g_signal_connect(my_gobject,
                 “notify::parent”,
                 G_CALLBACK(notify_parent_cb),
                 NULL);

void notify_parent_cb(GObject *my_gobject,
                      GParamSpec arg1,
                      gpointer user_data)
{

   ...  

}



C Demo!

Hooking up a
signal



Signals

● Some signals already have handlers registered
– eg. expose-event

● Some signals are passed up the widget tree 
from your widget all the way to the toplevel
– eg. expose-event, enter-notify-event
– You can choose whether or not to stop these in 

your signal handler by returning True or False



Java Demo!

Same code, 
different language:

Java



gtk_widget_show_all()

A Widget must be 
show()n

to be seen

Size request and allocation does not 
happen until the Widget is mapped.



delete-event

Closing a Window
!=

Terminating 
application

Beware the main loop!



GtkFileChooser

Choose a file,
any file



Python Demo!

Same code, 
different language:

Python



GtkTreeView

● Can display trees or lists of data
● Uses an model, view, control (MVC) paradigm
● You need three things:

– a GtkTreeView

– a GtkTreeModel 
(GtkTreeStore, GtkListStore or write your own)

– GtkCellRenderers

● You can store more data in a row than you 
display (handy!)



Python Demo!

See the 
gtk.TreeView for 

the Forrest



Getting More Out of GTK+/GNOME

● GConf – store configuration data
● GNOME-VFS – access data over networks
● Cairo – antialiased vector graphics
● GooCanvas – Cairo based canvas widget
● D-BUS – cross-desktop IPC with GLib tie-in
● Soup – HTTP, XML-RPC and SOAP libraries
● libwnck – Access window information
● libnotify – Popup balloons



GConf

GConf



GConf

What GConf is for:
● user preferences and settings

What GConf is not for:
● storing application state
● IPC
● general purpose data storage (use a DB)



GConf

● GConf keys are stored in a hierarchy and have 
a type (e.g. String, Boolean, Integer, List):
– /apps/nautilus/desktop/computer_icon_visible
– /desktop/gnome/background/picture_filename

● Don't go creating your own top level 
directories. Your application's settings go 
in /apps.

● You can get or set keys or connect a signal 
for when they change



GConf

A
GConf

Example



Design and Usability

Getting that
GNOME

Style



Design and Usability

● Dialog button order matters!
● Use stock icons whenever possible
● Use default fonts, sizes, and colours; theme is 

the user's choice, not yours.
● Be consistent with other applications
● Human Interface Guidelines (“the HIG”) just 

that: guidelines



Translation (i18n/l10n)

Translation



Translation (i18n/l10n)

● Native language only:

 g_print(“Hello World”);

:



Translation (i18n/l10n)

● Translatable...

 g_print(_(“Hello World”));

:



Translation (i18n/l10n)

● fr.po (French Translation)

 # ../src/hello.c:4

 msgid “Hello World”

 msgstr “Bonjour Monde”

:



Translation (i18n/l10n)

● Provided via GNU gettext
● Requires some build infrastructure
● GNOME's enthusiastic translation team can 

help!



Would Ye Like To Know More?

● In C:

– http://www.gtk.org/tutorial/
– Matthias Warkus, The Official GNOME 2 

Developer's Guide (No Starch Press, 
2004)

– Andrew Krause, Foundations of GTK+ 
Development (Apress, 2007)

● In Java:

– http://java-gnome.sourceforge.net/4.0/doc/
● In Python:

– http://www.pygtk.org/pygtk2tutorial/index.html

http://www.gtk.org/tutorial/
http://java-gnome.sourceforge.net/4.0/doc/
http://www.pygtk.org/pygtk2tutorial/index.html


Fin ;)
Questions?

www.davyd.id.au/articles.shtml

operationaldynamics.com/talks

http://www.davyd.id.au/articles.shtml
http://www.operationaldynamics.com/talks/

