
Writing Really Rad
GTK+ & GNOME

Applications
in C, Python or Java

Andrew Cowie
Operational Dynamics

Davyd Madeley
Fugro Seismic Imaging

Who Are We?

Andrew Cowie
spends an awful lot of
time programming
for someone who is
actually a suit. He
started with C in the
early 80s, picked up
Java in 1997, and
now, 10 years later,
is the maintainer of
the java-gnome
project.

Davyd Madeley
has been
programming for a
long time. He now
works as a software
engineer, writing GTK
applications for
geophysical analysis.
Previously he was the
gnome-applets
maintainer. He plays
the tenor saxophone.

An Overview

● Why choose GTK+ for your application?

● GTK+ Fundamentals

– Building a UI
– Box packing
– The main loop & signals

● Getting started (in C)

● Window tricks (in Java)

● Complex data models (in Python)

Why Would You Choose GTK+?

● Fast, flexible, ubiquitous
● Multi-platform

– Linux, Unix, Mac OS, Win32, and more

● Many languages
– C, Python and Java
– Perl, C++, Ruby, Haskell, C#, PHP, OCml, Eiffel,

Erlang, Guile/Scheme/Lisp, Lua, Octave, D, TCL,
Smalltalk, and more!

● LGPL

A Word on Versions

● Today we're using the following:
– gcc 4.1.x
– GTK+ 2.12.x
– Python 2.5
– pyGTK 2.10
– Sun Java 1.5 (& Free Java too!)
– Eclipse 3.3.x
– java-gnome 4.0.6rc1
– Glade 3.4.x

Widgets 'n stuff

● all displayed items are a GtkWidget; all
interfaces are built down from a “top level”,
inevitably GtkWindow

Building a UI

● You can write code ...
– Programmatically create elaborate custom content,

dynamic layouts, and smaller Widgets

C Demo!

A
 GtkWindow

with a
GtkButton

in it!

Compiling

gcc -o demo \
`pkg-config --cflags --libs \
 gtk+-2.0` demo.c

Building a UI

● You can write code ...
– Programmatically create elaborate custom content,

dynamic layouts, and smaller Widgets

● or use Glade ...
– Great for big, complex windows with lots of Layout

C Demo!

A
 GtkWindow

with a
GtkButton
with Glade!

Building a UI

● You can write code ...
– Programmatically create elaborate custom content,

dynamic layouts, and smaller Widgets

● or use Glade ...
– Great for big, complex windows with lots of Layout

● or do both simultaneously!
– No point using Glade if coding it directly is less

lines of code
– Use Glade for most of Window (ie, Labels) and

code for the dynamically generated bits

Box Packing

GTK+ uses a
“box packing”

model.

Box Packing

● Start with a GtkWindow

Box Packing

● Start with a GtkWindow

● Pack a GtkVBox into the Window

Box Packing

● Start with a GtkWindow

● Pack a GtkVBox into the Window

● Pack a GtkLabel into the VBox

Box Packing

● Start with a GtkWindow

● Pack a GtkVBox into the Window

● Pack a GtkLabel into the VBox

● Pack a GtkButton into the VBox

Box Packing

● Start with a GtkWindow

● Pack a GtkVBox into the Window

● Pack a GtkLabel into the VBox

● Pack a GtkButton into the VBox

● Pack a GtkStatusbar into the VBox

Box Packing

● Start with a GtkWindow

● Pack a GtkVBox into the Window

● Pack a GtkLabel into the VBox

● Pack a GtkButton into the VBox

● Pack a GtkStatusbar into the VBox

Button an atomic element, right?

GtkButton

Button is a composite Widget too!

GtkHBox

Button an atomic element, right?

GtkImage GtkLabel

Or go the other way. Your icon,

GtkImage

...some text...

GtkLabel

a Container to hold them

GtkHBox

pack 'em in

GtkLabelGtkImage

and you've got your Widget

MyCustomButton

Glade Demo!

Using
Glade

to do complex
Box packing

layouts

Packing Containers

● GtkVBox – vertical packing

● GtkHBox – horizontal packing

● GtkTable – rows and columns

● GtkHButtonBox – Buttons horizontally

● GtkAlignment – fine grained layout control.

Also,
● GtkSizeGroup – child Widgets share same

horizontal/vertical size.

The Main Loop

● GUI programming is event driven programming
● The main loop polls sources for events
● events include user activity (keyboard or

mouse), I/O, or a timeout
● events issued as named signals; register

callbacks for signals you want to react to

The Main Loop

Callbacks for events are
issued from the main loop...

... one at a time

... and it's single threaded!

DON'T BLOCK
THE MAIN LOOP!

Signals

● Signals are connected to GObjects

● Often you pass 4 things:
– object
– signal name
– callback function
– optional free-form “user data”

● Prototype for each callback in API docs
● Some callbacks return information to GTK+

(eg a gboolean)

Signals – C

g_signal_connect(my_gobject,
 “notify::parent”,
 G_CALLBACK(notify_parent_cb),
 NULL);

void notify_parent_cb(GObject *my_gobject,
 GParamSpec arg1,
 gpointer user_data)
{

 ...

}

C Demo!

Hooking up a
signal

Signals

● Some signals already have handlers registered
– eg. expose-event

● Some signals are passed up the widget tree
from your widget all the way to the toplevel
– eg. expose-event, enter-notify-event
– You can choose whether or not to stop these in

your signal handler by returning True or False

Java Demo!

Same code,
different language:

Java

gtk_widget_show_all()

A Widget must be
show()n

to be seen

Size request and allocation does not
happen until the Widget is mapped.

delete-event

Closing a Window
!=

Terminating
application

Beware the main loop!

GtkFileChooser

Choose a file,
any file

Python Demo!

Same code,
different language:

Python

GtkTreeView

● Can display trees or lists of data
● Uses an model, view, control (MVC) paradigm
● You need three things:

– a GtkTreeView

– a GtkTreeModel
(GtkTreeStore, GtkListStore or write your own)

– GtkCellRenderers

● You can store more data in a row than you
display (handy!)

Python Demo!

See the
gtk.TreeView for

the Forrest

Getting More Out of GTK+/GNOME

● GConf – store configuration data
● GNOME-VFS – access data over networks
● Cairo – antialiased vector graphics
● GooCanvas – Cairo based canvas widget
● D-BUS – cross-desktop IPC with GLib tie-in
● Soup – HTTP, XML-RPC and SOAP libraries
● libwnck – Access window information
● libnotify – Popup balloons

GConf

GConf

GConf

What GConf is for:
● user preferences and settings

What GConf is not for:
● storing application state
● IPC
● general purpose data storage (use a DB)

GConf

● GConf keys are stored in a hierarchy and have
a type (e.g. String, Boolean, Integer, List):
– /apps/nautilus/desktop/computer_icon_visible
– /desktop/gnome/background/picture_filename

● Don't go creating your own top level
directories. Your application's settings go
in /apps.

● You can get or set keys or connect a signal
for when they change

GConf

A
GConf

Example

Design and Usability

Getting that
GNOME

Style

Design and Usability

● Dialog button order matters!
● Use stock icons whenever possible
● Use default fonts, sizes, and colours; theme is

the user's choice, not yours.
● Be consistent with other applications
● Human Interface Guidelines (“the HIG”) just

that: guidelines

Translation (i18n/l10n)

Translation

Translation (i18n/l10n)

● Native language only:

 g_print(“Hello World”);

:

Translation (i18n/l10n)

● Translatable...

 g_print(_(“Hello World”));

:

Translation (i18n/l10n)

● fr.po (French Translation)

 # ../src/hello.c:4

 msgid “Hello World”

 msgstr “Bonjour Monde”

:

Translation (i18n/l10n)

● Provided via GNU gettext
● Requires some build infrastructure
● GNOME's enthusiastic translation team can

help!

Would Ye Like To Know More?

● In C:

– http://www.gtk.org/tutorial/
– Matthias Warkus, The Official GNOME 2

Developer's Guide (No Starch Press,
2004)

– Andrew Krause, Foundations of GTK+
Development (Apress, 2007)

● In Java:

– http://java-gnome.sourceforge.net/4.0/doc/
● In Python:

– http://www.pygtk.org/pygtk2tutorial/index.html

http://www.gtk.org/tutorial/
http://java-gnome.sourceforge.net/4.0/doc/
http://www.pygtk.org/pygtk2tutorial/index.html

Fin ;)
Questions?

www.davyd.id.au/articles.shtml

operationaldynamics.com/talks

http://www.davyd.id.au/articles.shtml
http://www.operationaldynamics.com/talks/

